
THE CELLULAR HIERARCHY

INFORMATION MODELING ENVIRONMENT

BILAL KHAN DARDO D. KLEINER DAVID TALMAGE

Advanced Engineering & Sciences, ITT Industries
at the Center for Computational Sciences, Naval Research Laboratory,

Washington D.C., U.S.A.

Keywords: Distributed database, multi-agent system, dis-
tributed computing

1 OVERVIEW
Within the CHIME, information is organized into units called
cells. The cell is a new type of atomic object, which extends
existing distributed object paradigms, such as agents, actors,
and proxies. In what follows, we describe some of the im-
portant aspects and features of cells.

1.1 CHIME AS OPEN MULTI-AGENT SYS-
TEM
As a first approximation, one may consider a cell to be a
weak agent in the sense proposed by Wooldridge and Jen-
nings [7], i.e. the cell is an object that is autonomous, social,
reactive and pro-active. A machine indicates its willingness
to host cells by running a special depot program. Each cell
within the CHIME then resides in some depot process; each
depot process manages a set of cells (see figure 1).

machine 1machine 2

depot
cell

machine 3

network

Figure 1: Cells residing in a collection of depots.

The physical address of a cell is defined to be the IP ad-
dress of the machine on which its depot process is running. It
is possible for a cell to migrate between depot processes on
different machines, e.g. a cell can request to change its phys-
ical address. In this sense, the CHIME may be considered to
be an open multi-agent system.

We use active objects (cells) as the basic quantum of in-
formation because:

Thesis 1: Information must be managed at the
level of the active processes generating it, not at
the level of passive data that is the byproduct of
such processes.

1.2 CHIME AS MULTI-RESOLUTION DIS-
TRIBUTED DATABASE
Unlike traditional agents (see e.g. [2], [5]), the cell is a com-
posite object, i.e. each cell is made up of sub-cells, and each
cell is a sub-cell of some super-cell. Thus cells are organized
in a tree, whose nodes (the cells) are distributed across the
depots (see figure 2). A cell encapsulates its sub-cells, and is
responsible for providing an interface to their information in
an aggregated form.

While the Web does permit the organization of informa-
tion using a directory structure or a tree of hyper-linked
pages, there is a fundamental difference: the Web does not
itself interpret the structure of the hyper-links. In contrast,
the CHIME interprets cell hierarchy as follows: sub-cells
represent the internal contents of their super-cell. Accord-
ingly, if the a user wishes to obtain information at a higher
resolution or to see details not presently revealed by a cell,
the user simply enters into the cell. The CHIME thus facil-
itates the efficient partitioning of information, and supports
multi-resolution representations.

51
2

34

32

1

5 4

Figure 2: The tree of cells distributed across depots.

Each cell has a name, which remains fixed over its entire
lifetime. The logical address of a cell A is defined to be
the dotted sequence of cell names, starting at the root of the
CHIME cell tree and ending at the cell A. It is possible for
a cell to relocate within the tree, e.g. a cell can request to
change its logical address. Relocation of a cell does not alter
its relationships with its sub-cells. Note that relocation and
migration are independent notions of mobility.

We use composite objects (cells) as the basic quantum of
information because:

Thesis 2: A scalable solution to the problems of
location, management and annotation of informa-
tion requires maintaining information at multiple



resolutions; aggregation must be supported.

1.3 CHIME AS HIERARCHICAL SPATIAL
DECOMPOSITION
So far, the sub-cells of a cell have been considered equal
peers in their relationship to their common parent. This is
certainly too restrictive, since a large part of information is
encoded in the relative positions of data. In analogy, con-
sider how passive data in web pages is rendered meaningful
by its relative placement. Accordingly, each CHIME cell is
assigned a 3-dimensional volume by its parent, and is in turn
responsible for allocating a region of this volume to each of
its sub-cells. The 3-dimensional volume that a cell occupies
is referred to as its geometry or spatial position (see figure
3). While the logical address of a cell indicates its location
in the CHIME tree, a cell’s spatial position further specifies
the relationship of the cell within its super-cell. By requir-
ing each cell to occupy some volume in 3-space, the CHIME
is able to efficiently compute distances between cells. This
allows the CHIME to support the notion of information lo-
cality, i.e. it facilitates being able to encode and assess the
relative nearness or farness of cells.

1

2
3

4
5

32

1

5 4

Figure 3: Geometries of cells.

It is possible for a cell to reposition itself within its super-
cell’s coordinate system, e.g. a cell can request to change its
spatial position within its super-cell.

We use spatial objects (cells) as the basic quantum of in-
formation because:

Thesis 3: Meaningful organization of information
requires specification of geometric relationships
(e.g. proximity) between information quanta.

1.4 CHIME AS INTERCONNECTED AC-
TIVE INFORMATION
Cells are active objects capable of intercommunication. Ev-
ery cell can communicate (via a message passing interface)
with any of its sub-cells and with its super-cell. Beyond this,
if a cell A wishes to communicate with some cell B (that is
not a sub-cell and not a super-cell), it is necessary for A to
own a model of B. This model, which we denote as M

�
B � , is

an object that is created dynamically by cell B and delivered
by the CHIME to cell A. The CHIME maintains a bidirec-
tional channel between the model M

�
B � and the cell B which

created it. This channel can be used to stream data from B to
M

�
B � , and also provides bidirectional message delivery ser-

vices between B and M
�
B � . The operation of this channel is

transparent to changes in the physical or logical addresses of
the cells A and B. The model M

�
B � in turn acts as a mediator

[4], providing its owner A with reliable message-passing to
B (see figure 4).

M
(B

)

B

messages

stream data

messages

A

Figure 4: Cell A communicates with cell B via a model
M

�
B � .

In view of the above description, we regard cells that sup-
port communication with other cells as model factories [4].
While each cell may both create and own an unlimited num-
ber of models, every model has a privileged relationship with
precisely two cells: the cell that created it, and the cell that
owns it. Unlike traditional proxies [6], models are active ob-
jects, and may contain significant state information. Specifi-
cally, there may be ongoing bidirectional communication be-
tween a cell and its model, outside of what is triggered by
specific activity of the model’s owning cell.

We use interconnected active objects (cells) as the basic
quantum of information because:

Thesis 4: Information must be modeled as a dy-
namical system.

1.4.1 GRACEFUL DEGRADATION OF IN-
TERCONNECTIVITY
To ensure scalable communication overhead, the CHIME
does not support arbitrary communication patterns between
cells. Specifically, a cell A may only own models of cells that
are reachable from A. The set of cells reachable from A is de-
noted Re

�
A � , and consists of: the siblings of A, the siblings of

A’s super-cell, the siblings of A’s super-super-cell, and so on
up to a specifiable number of levels. Figure 5 distinguishes
cells that are in Re

�
A � by shading them black.

Recall that the CHIME interprets cell hierarchy by con-
sidering sub-cells to be higher-resolution representations of
regions of their common super-cell. Conversely, a super-cell
is expected to be an aggregator, generating a low-resolution
version of the information in its sub-cells. In light of this,
the membership of Re

�
A � can then be seen to satisfy the fol-

lowing appealing criterion: A gets models of nearby cells
with high resolution information, and it models of far-away
cells with low resolution information. Indeed in general, the
greater the distance to A, the lower the resolution of the
model obtained.

The actual set of models owned by a cell A may be much
smaller than Re

�
A � , because (1) the set of siblings under con-

sideration at each level may be pruned at the discretion of
their super-cell at the next higher level, and (2) any reachable
cell can opt out of providing a model to A. The set of mod-
els owned by A is maintained automatically by the CHIME’s



A

Figure 5: Reachability pruning for graceful degradation of
interconnectivity.

model collection FSMs. In particular, the set of models is
updated whenever A relocates, and when other cells relocate
in a manner that causes them to enter or leave the set Re

�
A � .

We prune the possible inter-connectivities of cells be-
cause:

Thesis 5: For scalability, information interconnec-
tivity must degrade gracefully with distance.

2 CHIME AS AN INFORMATION WEB
We summarize some of the important aspects of the CHIME:

1. The models that a cell returns are based on the logical
address, the physical address, the spatial position, and
declared capabilities of the requester.

2. Using models, a cell can interact with other cells that are
in its immediate proximity, as well as cells in the prox-
imity of its super-cell, cells in the proximity of its super-
super-cell, etc. The cumulative outcome being that a
cell has access to information at a resolution that decays
smoothly with distance from its present location1.

3. A cell typically interacts with models of its sub-cells,
and aggregates their state in a suitable manner.

Any cell which incorporates a human user as part of its
control logic is called a user cell. One example of a user
cell is the CHIME browser. The browser is a featureless ap-
plication whose only purpose is to allocate resources of the
machine to the models it owns, then (1) request the models it
owns to render themselves using these resources, and (2) to
respond to the users requests to relocate the browser within
the CHIME tree. Presently, models must render themselves
by interacting directly with the OS; this restricts the physical
address of the CHIME browser cell to be the address of the
user’s machine.

3 DESIGN
3.1 THE DEPOT

The depot is the process which serves as an an object repos-
itory for running cells, and is presently implemented using a

1Here, by distance, we mean distance within the cell hierarchy.

Java MBean server. In particular, each depot supervises the
execution of cell code in the host’s environment, and pro-
vides its resident cells with an interface to CHIME services.
These services include:

1. migration interface for changing the physical address of
a cell.

2. relocation interface for changing the logical address of
a cell.

3. repositioning interface for changing the spatial position
of a cell.

4. automatic collection of models on behalf of a cell.

Each of the first three services listed above is typically re-
quested by the cell itself. When a cell invokes any of these
interfaces, a suitable finite state machine is instantiated in the
depot’s protocol layer. This finite state machine handles all
inter-depot messages required to carry out the request. The
protocols are implemented using the services of JavaSpaces,
which acts as external transaction-based persistent storage.
Sample executions of these protocols appear later (see fig-
ures 8, 9, and 10).

The fourth service offered by the depot is automatic model
collection. This service operates by creating one model-
collection FSM for each of the depot’s resident cells. A
model-collection FSM monitors the CHIME hierarchy on be-
half of the cell it represents, and acts to detect any changes in
the cell’s reachable set. (Recall that cells may enter or leave
the reachable set as a result of relocations within the tree.)
When a model-collection FSM detects new members enter-
ing [existing members leaving] the reachable set, it com-
mences procedures to acquire new models [destroy previ-
ously acquired models] as appropriate.

Pe
rs

is
te

nt
, t

ra
ns

ac
tio

n-
ba

se
d 

st
or

ag
e

Ja
va

sp
ac

es

D
ep

ot
 d

ir
ec

to
ry

 s
er

vi
ce

s

Repositioning
FSMs

Model collection
FSMs

Migration Relocation
FSMs FSMs

Migration

Cell repository

MBean server

Depot services interface

Cell Cell

Model collectionRelocation Repositioning

Depot protocols layer

Inter-depot transport

Figure 6: The architecture of a depot.

3.2 THE CELL
A cell is agent code, implemented as a serializable Java
thread group; it is the quantum of active data stored in an
CHIME depot. The cell contains a Model Manager and mes-
sage passing interfaces to the each model it has created and



each model that it owns. Together, this collection of inter-
faces permit the cell to communicate with other reachable
cells.

The Model Manager contains a customizable Model Fac-
tory; this factory is consulted by the Model Collection FSM
whenever a model of the cell needs to be made. In addition,
the Model Manager is responsible for maintaining two ta-
bles: one containing interfaces to the models it has created,
and the other containing the models that it owns (i.e. models
that were made for it by other cells). The Model Manager
inserts and removes models and interfaces from these tables
as directed by the associated Model Collection FSM which
resides within the depot.

Defining a custom cell requires providing a concrete im-
plementation for the Reasoning module and the Model Fac-
tory. While the Model Factory defines the cell’s response to
communication attempts by other cells, the Reasoning mod-
ule defines the cell’s response to the passage of time. The
Reasoning module has access to CHIME services for cell
migration, relocation, and repositioning; these services are
brokered by the cell’s depot. The Reasoning module also has
access to persistent storage to facilitate the implementation
of safe multi-cell distributed procedures.

Interfaces to
created models

Owned models

Persistent,
transaction-based storage(M

ig
ra

tio
n,

 r
el

oc
at

io
n,

 m
ut

at
io

n)

Model collection

D
ep

ot
 S

er
vi

ce
s 

in
te

rf
ac

e

Reasoning

Model manager

Model Factory

message passing interfaces

Figure 7: The architecture of a cell.

3.3 THE CHIME PROTOCOLS
CHIME cells support the notion of migration, i.e. the en-
tire state of a cell can be frozen, transported to another host,
re-instantiated in the depot there, and revived at its new resi-
dence. Figure 8 depicts the interactions necessary for a suc-
cessful migration scenario that is initiated by the cell itself.
Utilizing the services of its current depot, the cell requests
to be migrated to a new depot. The local depot establishes a
transaction context under which it will service the cell’s re-
quest. First, the target depot is asked to create a deep copy
of the cell. This requires instantiating an object of the corre-
sponding type and copying the migrating cell’s data members
(state). When the target depot has completed this, the re-
questing depot can proceed to terminate the execution of the
original cell. The new copy is then started on the target depot,

thus reviving the cell at its new residence. At this point, the
original depot can destroy the original cell and commit the
transaction. Because the inter-depot transport layer is imple-
mented using Java RMI [3], and RMI does not serialize the
context of running Java threads, cells must currently be writ-
ten to be re-entrant, to the extent that they must expect to be
restarted at the new depot after migration.

startTransaction()

copy(Cell)
newInstance()

startTransaction()

Cell Cell Depot New Depot New Instance

commit()

accept(this)

start()

checkTransaction()

stop()

start(Cell)

accept(this)
checkTransaction()

destroy(Cell) Transaction

(New Depot)
migrateTo

Figure 8: Interaction diagram depicting how a cell migrates
itself.

The CHIME also supports two additional concepts of cell
mobility: CHIME cells maintain both a logical location in
the CHIME tree, and each cell occupies a specific spatial po-
sition within its parent cell’s volume. Relocation (changing
in logical address) and repositioning (changing spatial posi-
tion) are not independent notions of mobility: If cell reposi-
tioning results in the collision of cell boundaries, the CHIME
will automatically attempt to perform the necessary reloca-
tion of cells. Specifically, if (as a result of repositioning)
a cell’s spatial position collides with the position of one of
its siblings, the CHIME will attempt to relocate the reposi-
tioned cell so as to make it a sub-cell of its (former) sibling.
Likewise, if (as a result of repositioning) a cell’s spatial posi-
tion collides with the boundary of its super-cell, the CHIME
will attempt to relocate the repositioned cell so as to make
it a sibling of its (former) super-cell. Figure 9 and 10 depict
the interactions that occur when a cell attempts to relocate or
reposition itself, respectively.

Note that all CHIME protocols are executed under a
JavaSpaces transaction manager, so that if a particular step in
the protocol fails, the side effects of the entire operation can
be rolled back. The CHIME relies on JavaSpaces as a per-
sistent back-end to assist in preservation of the well-defined
ACID properties required to recover from failure conditions,
and to facilitate appropriate commit and rollback actions.

3.4 THE BROWSER
The CHIME browser performs the same function of today’s
popular browser software (for example, Netscape or Opera)



Cell

lookup(New Parent)

startTransaction()

lookup(this.Parent)

(this, New Parent)
relocate

checkTransaction()

checkTransaction()

accept()

commit()

inject(Cell, New Parent)

eject(Cell, Parent)

accept(this)

accept()

addChild(Cell)

accept()

removeChild(Cell)

accept(this)

Transaction

Parent DepotCell Depot New Parent Depot Parent New Parent

Figure 9: Interaction diagram depicting how a cell relocates
itself.

startTransaction()

Cell DepotCell Parent Depot Parent

Transaction

positionTo
(Position)

checkTransaction()

lookup(Parent)

commit()

accept()

accept(this)

reposition(Cell, 
Parent, Position)

(Child, Position)
setChildPosition

accept()

Figure 10: Interaction diagram depicting how a cell reposi-
tions itself.

in that it presents a graphical view of the information ele-
ments to the user, and accepts and acts upon user input in
order to navigate the web of data. However, in the CHIME,
the browser is an active participant in the data model itself.
The CHIME browser is itself a cell, and makes use of logical
mobility in the CHIME tree in order to navigate through the
cells that make up the CHIME universe. The only present
limitation is that the browser cell cannot migrate to other de-
pots, and must remain fixed at its starting point where the
user resides. This is because the primary function of the
browser cell is to act as a gateway to the operating system
on the user’s machine. Allowing the browser cell to migrate
would require wrapping the host platform’s operating system
in a cell, which is beyond the scope of the present work2.

The model collection FSM operating on behalf of the
browser requests models from cells within its reachable set.
The model collection FSM advertises local hardware capa-
bilities, and collected models are expected to be renderable
using this hardware (specifically, to implement a Render()
method). This is not typically required of models that are
destined to non-browser cells. The CHIME browser func-
tions by (1) periodically calling the Render() method of its
owned models, so they may render themselves onto the out-
put devices available at the host, and (2) to accept events
from local input devices for relay to the browser’s internal
Reasoning module, where suitable repositioning and reloca-
tion actions are triggered.

4 CONCLUSION
In this paper, we provided an overview of the motivating
principles and design of the Cellular Hierarchy Information
Modeling Environment (CHIME), and assessed its advan-
tages and merits as a foundational framework for a next gen-
eration information web.

References

[1] UML — Unified Modeling Language, version 1.0. Ra-
tional Software Corp., 1997.

[2] B. Burg. Agent naming. FIPA Spec - 1999 - 017 - 0.1,
1999.

[3] T. B. Downing. Java RMI: Remote Method Invocation.
IDG Books Worldwide, Inc, 1998.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns — Elements of Reusable Object-Oriented
Software. Addison-Wesley Longman, 1995.

[5] N. Minar, M. Gray, O. Roup, R. Krikorian, and P. Maes.
Hive: Distributed agents for networking things. In Pro-
ceedings of ASA/MA’99, the First International Sympo-
sium on Agent Systems and Applications and Third In-
ternational Symposium on Mobile Agents, 1999.

2This functionality can be achieved via the use of thin-client virtual
viewers (e.g. VNC)—the CHIME neither restricts nor enables this capa-
bility.



[6] J. Nelson. Programming Mobile Objects with Java. John
Wiley and Sons, Inc, 1999.

[7] M. Wooldridge and N. Jennings. Intelligent agents:
Theory and practice. Knowledge Engineering Review,
10(2):115–152, 1995.


