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ABSTRACT. In the study of the automorphism group of a free group F = F(X)
on aset X, J. H. C. Whitehead introduced a graph whose vertices are elements
of F', where two vertices are connected if and only if the corresponding elements
of F are related by one of a specially chosen set of generators of Aut(F'). Here
we give a precise structural description of Whitehead’s graph for the case where
F = Fj is the free group of rank two. This description allows us to quantify
relationships between the natural length function | | of F», and the action of
Aut(F3) on F3. As an application, we show that Whitehead’s algorithm for
testing automorphic conjugacy in F» runs in time that is at most quadratic in
the length of the elements.

1. The Automorphism Graph of F;

To start, let X denote a base set of elements {a,b,...}, and let X~! =
{4, B, ...} be the set consisting of the corresponding formal inverses of elements
from X. We call the elements of X U X! letters, and denote the free group on
the set X as F(X).

The elements of the free group can be taken as the set of freely reduced words of
finite length over the alphabet X U X!, where by freely reduced we mean words
which contain no subword of the form zz~! or zz~! for any z € X. Multiplication
of elements of F'(X) is simply concatenation of words, followed by free reduction,
which is to say repeated cancellation of all subwords of the form zz~! or zz~! for
z € X. The unique empty word of length 0 plays the role of the identity element.
It is well-known that given two sets X and Y the free group F(X) = F(Y) if and
only if |X| = [Y|. This justifies denoting such a free group as F|x|, since upto
isomorphism the group depends only on the cardinality of the base set. The group
Fix| is called the free group of rank | X|. This work considers F», the free group of
rank two on the set X = {a,b}.

Recall that for any group G, the set of automorphisms of G again forms a group,
denoted Aut(G), in which composition of automorphisms plays the role of multi-
plication. Given a group G, two elements g,h € G are said to be automorphic
conjugates if there exists an automorphism ¢ € Aut(G) for which ¢(g) = h.

This work concerns the properties of Aut(F»), the group of automorphisms of
F5. In general, a structural description of the orbits of F;, under the action of
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Aut(F,) has several algorithmic applications. The principal one we will consider
here pertains to the problem of testing automorphic conjugacy:

DEFINITION 1.0.1. For each n € N, let AUT-CONJ,,(u,v) be the following
decision problem:

INPUT: u,v€eF,
OUTPUT: 1 ifu ang’ v are automorphic conjugates in F,.
0 otherwise.

Note that AUT-CONJ is different from the much simpler problem of testing
(ordinary) conjugacy:

DEFINITION 1.0.2. For each n € N, let CONJ,,(u,v) be the following decision

problem:
INPUT: u,v € F,
outpur: | 1 #3wEF, st u’ =w.
0 otherwise.

To hilight the difference between CONJ,, and AUT-CONJ,,, note that if
u,v are conjugates in the ordinary sense, then certainly they are automorphic
conjugates—since conjugation is an inner automorphism. On the other hand not
every automorphism of F), is inner, so it is possible for v and v to be automorphic
conjugates but not be conjugates in the ordinary sense.

The result that CONJ,, is decidable is folklore. The algorithm attributed to
Greendlinger is as follows: Take two cycle graphs of lengths |u| and |v| respectively.
Write u clockwise on the edges of the first, and v along the second—these labelled
graphs are called “circular words”. Now perform cyclic free reduction on these
circular words, which is to say repeatedly contract all pairs of consecutive edges
with labels z,271 or z,2~! (for z € X). This reduction process terminates since
the original words are of finite length, and their length strictly decreases at each
reduction step. Upon termination of cyclic free reduction, check to see if the two
circles are equal graphs, as drawn. If so, output 1. Otherwise output 0. It is
not difficult to show that this procedure is correct, and can be implemented in at
O(|u|? logn + |v|? logn) time. This will be revisited in Section 4, where algorithmic
issues are addressed.

In 1936, J. H. C. Whitehead proved [27, 28] that AUT-CONJ,, is also de-
cidable. His argument, which will be outlined in Section 4, provided a bound of
O(2m2/v/+1v1), Until the recent work of A. Miasnikov and V. Shpilrain [17], this was
the best known analysis of Whitehead’s Algorithm. In their paper (to appear), using
techniques are quite different from what is carried out here, Miasnikov and Shpilrain
obtained the first polynomial-time analysis for CONJ,. Their analysis showed that
in F, Whitehead’s algorithm always terminates in time O(min(|ul,|v])*). In this
work, we will provide a structural description of the orbits of F5, making it possible
for sharper analysis of Whitehead’s algorithm in the case of AUT-CONJ,. We will
show that Whitehead’s algorithm always terminates in time O(min(|u|,|v|)?). This
will bring the upper-bound complezity of best known algorithm for AUT-CONJ,
in line with the upper-bound complexity of the best known algorithm for CONJs.

1.1. Whitehead’s Graph. It is well-known [13, pp. 31] that the automor-
phism group of F}, is generated by the set of elementary Whitehead automorphisms,
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which we will denote as W,,. At the end of this section, we will present the White-
head automorphisms Wy which generate Aut(Fy). First, let us see how they will
be used.

DEFINITION 1.1.1. The Whitehead Graph of F,, is the labelled directed graph
r, = (Fna En)

where (u,v) € E,, if there is some ¢ € W,, satisfying ¢p(u) = v. The directed edges
of T, are equipped with a labelling L, : E, — 2" which satisfies ¢ € Ly (u,v) &
du = v.

REMARK 1.1.2. Since the automorphisms W, generate all of Aut(F,) [27, 28],
it follows that two vertices uy, us are connected by a path in Ty, if and only if they
are conjugate via an automorphism of F,.

The previous remark suggests that a good understanding of the structure of
I',, might be used to devise efficient algorithms for testing automorphic conjugacy
in F,. This is precisely what we aim to accomplish in the subsequent sections, for
the special case when n = 2.

NoTATION 1.1.3. Since hereafter we shall be considering Fo and Aut(F») almost
to the exclusion of free groups of rank n > 2, we adopt the following simplifying
notation: T' =Ty, W = Ws.

We will now describe the automorphisms W precisely. In this exposition, we
partition W into three subsets: the 8 length-preserving automorphisms II, the 8
basic shifts ¥, and the 4 conjugations ©.

An automorphism ¢ in Aut(F3) is called a length-preserving or permuta-
tion automorphism if |u| = |¢(u)| for all w in F. It is easy to see that there are
8 length-preserving automorphisms, which together form an 8 element subgroup of
Aut(F5) of isomorphism type D4. For convenience, we shall take the following 3
automorphisms as a (non-minimal) set of generators for this subgroup:

o Ja - A o Ja = a . a — b
Ta - b — b L b —» B T b = a

For x € X U X~ 1, we shall hereafter abbreviate #(z) as %.
We denote the 8 element group generated by {m,, 7,7} as

I = {17 T, Tp, T, TqTp, TqT, THT, 7Ta7Tb7T}.

The 8 basic shift automorphisms in ¥ are obtained by taking the following
two automorphisms for each € X?, where § = +1:

" x — xi ¢':c|—>§:5a:
r = 2z e

~

z = Z
REMARK 1.1.4. It is easy to check from these definitions that
(%)71 =F, z—lw
for each r € X*!.

The conjugation automorphisms O are obtained by considering the follow-
ing automorphism for each z € X°, where § = +1:

r = T
Hw : ~ 14
r = T IT
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The automorphisms ® can be obtained by composing appropriate elements
from ¥. Thus, we restrict ourselves to the smaller generating set (IIU ¥) C W.
Clearly, this will not change the fundamental equivalence of the problems of auto-
morphic conjugacy and determining whether two vertices lie in the same connected
component of T’ (see Remark 1.1.2, pp. 3).

partitioning of I" into connected components.

1.2. Symmetries in Whitehead’s Graph. In the two subsections that fol-
low, we will consider two symmetries, which give rise to conjugacy and permu-
tation equivalence relations, respectively.

1.2.1. Conjugacy Equivalence. As noted in the paragraph following Definition
1.0.2 (pp. 2), it is easy to test whether two elements of F, are conjugates (in the
ordinary sense). This suggests that we somehow “eliminate” ordinary conjugacy
from T'. Let us do this now, formally.

DEFINITION 1.2.1. The conjugacy equivalence relation J on F; is defined

by making g ~5 ¢' iff g¥ = g’ for some w in F5. Clearly J is an equivalence
-1

relation since (i) g' = g, and (ii) g* = g' implies (¢')* =g, and (iii) g** = ¢,

(g")"? = g" implies g¥**> = g". We denote the equivalence classes in Fy modulo

T as Fy = F,/J, and the elements of Fy are referred to as conjugacy classes of
Fs.

NOTATION 1.2.2. For any concrete element in Fy (e.g. abbAB) we will denote
its conjugacy class by enclosing the element in [,] (e.g. [abbAB]). For a variable
representing an element of F» (e.g. g) we denote its conjugacy class by a” symbol
(e.g. §). For a conjugacy class § € Fy we define |G| to be the length of g after cyclic
free reduction. We shall often consider an element §j € F' to be a cycle graph Oj; of
length |g|, whose edges are labelled clockwise by successive letters in the cyclically
reduced from of g.

REMARK 1.2.3. In this work, we adhere to several conventions regarding depic-
tions of cyclic words as cycle graphs (see Figure 1). First, there is no distinguished
vertez in the cycle graph—that is to say that one can read the cyclic word off from the
cycle graph by beginning at any vertex. Second, the graphs have a distinguished ori-
entation; we will assume that diagrams of cyclic words will always be read clockwise.
Clearly, o directed edge labelled by x presents the same information as the reverse
edge labelled by z=! (where z is in {a,b, A, B}). Our final notational convention
seeks to circumvent this ambiguity: edges are never labelled by negated generators
{A,B}). When reading the cyclic word off from the cycle graph, it is implicitly
assumed that the reader will invert the labels of all edges that are traversed in the
direction opposite to their depicted orientation.

NOTATION 1.2.4. Given an element w in F = F(X) and an automorphism
¢: F — F, we define ¢(w) to be the freely reduced form of the image of w under ¢.
We define ¢[w] to be the unreduced word obtained by replacing every occurrence of
x in w with ¢(x), where x € X*. Figure 2 presents an illustration of this notation.

OBSERVATION 1.2.5. Given an automorphism ¢ of F = F(X) and two elements
u, v in F that are conjugate via w. Then u¥ = v implies that ¢(u®) = ¢(v), i.e.
that ¢(u)?™) = ¢(v), which is to say that p(u) and ¢p(v) are conjugate via G(w).



Figure 1: The cycle graph representing the conjugacy class of the words aBBa,
BaaB and AbaBBaBa.

graphical replacement
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Figure 2: ¢,(aaBB) versus ¢,[aaBB].

In short, every automorphism ¢ induces well-defined map of conjugacy classes é:
F—F.

NOTATION 1.2.6. Analogously, given a conjugacy class @ in F and map of
conjugacy classes ¢, we denote 43(11;) to be the cyclically reduced form of the image
of W under ¢. We denote ¢~>[uﬂ to be the cyclic word obtained after replacing every
occurrence of x in W with qg(a:) but prior to performing free/cyclic reduction. Figure
3 presents an illustration of this notation.

The following sets of maps of conjugacy classes will be of central importance
in what follows:

DEFINITION 1.2.7. Let the set of permutation maps be defined as
M= {#|re}
and take the set of basic shift maps as
U={4|yeT}

DEFINITION 1.2.8. The permutation equivalence relation ~p on Fy is
defined so that for any two elements u,v € Fy, u ~m v holds precisely when there
is some 7 € II for which wu = v. The fact that this gives an equivalence relation is
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Figure 3: ¢,([aaBB)) versus ¢,[[aaBB]].

obvious, since the permutation automorphisms include the identity and are closed
under composition and inversion.

DEFINITION 1.2.9. The shift relation ~vy is defined so that for u,v € Fj,
u ~g v holds precisely when there is some ¥ € U for which Yu = v. The shift
relation is not an equivalence relation, since in general, the composition of two
basic shifts is not a basic shift.

Since the elements of IT and ¥ are automorphisms, Observation 1.2.5 (pp. 4)
applies, and the corresponding relations ~ and ~y factor through the relation 7
(See Definition 1.2.1) in the obvious way to give the equivalence relation ~; and
relation a0y on Fh.

Specifically, we obtain:

DEFINITION 1.2.10. The permutation equivalence relation ~m on Fy is
defined so that for any two elements u,v € Fz, u ~n v holds precisely when there
is some @ € Il for which 7u = v.

DEFINITION 1.2.11. The shift relation ~y on Fy is defined so that for u,v €
Fy, u my v holds precisely when there is some ¥ € U for which Yu = v.

REMARK 1.2.12. Since automorphisms 41 and vy, differ only by a conjugation,
it is straightforward to verify that for every x € X U X1,

2" =i ;:



are identical maps of conjugacy classes.

By Remark 1.2.12 (pp. 6) that ¥ = {t)o, s, ¥4, ¥B, o, 49, a0, Y0} has only
4 distinct members (while in contrast, |¥| = 8). For concreteness, we take

(1) @={¢w|$€XUX_1}7

and to avoid confusion, in what follows we will never use the names ,¢ (i.e. left
subscripts) to identify the elements of ¥. Combining the above equality with Re-
mark 1.1.4 (pp. 3), we see that

bt =g Pia
forallie Z and zin X U X L.

In subsequent sections, we shall investigate the structure of Whitehead’s Graph
I" modulo J, which we name in the next definition:

DEFINITION 1.2.13. The Automorphism Graph
Q:(Fg, %HU%\I;)

is the combinatorial object whose vertices are conjugacy classes of F>, where every
pair of vertices u,v € Fy is connected by a directed edge if and only if u and v are
related by ~m or ~y. The directed edges of Q are equipped by a labelling

EZFQXFQ%ZI:IU&’
which satisfies ¢ € L(u,v) & du = v.

The Automorphism Graph Q is simply '/ 7, i.e. the graph obtained by taking
I" and identifying all vertices that are related by the conjugacy equivalence relation
on F5 (See Definition 1.2.1). Moreover, observe that if u,v € Fy and u ~ 7 v, then
for any ¢ € Aut(F,), ¢(u) ~7 ¢(v). This is simply because Inn(Fz) < Aut(Fz).
In the case where ¢ € (® U ¥) this means that we (i) identify vertices u and v
(ii) identify vertices ¢(u) and ¢(v), and (iii) the edges (u, d(u)) with (v, d(v)) —
both of which are labelled by ¢. In the quotient graph (2, the vertex uJ = vJ
is connected to the vertex ¢(u)J = ¢(v)J by an edge labelled with the map of
conjugacy classes .

Since every conjugation is an automorphism, Remark 1.1.2 (pp. 3) implies that
u and v are in the same connected component of I if and only if «.7 and vJ are in
the same connected component of 2 = I'/ 7. We shall hereafter focus on elucidating
the structure of €.

REMARK 1.2.14. In this work, we adhere to several conventions regarding de-
pictions of the automorphism graph Q (see Figure ). First, vertices of Q are always
labelled by (an arbitrary) minimal-length representative of the corresponding con-
jugacy class. A directed edge labelled by 1, presents the same information as the
reverse edge labelled by 1,—1 (where = is in {a,b, A, B}). Our second convention
seeks to circumvent this ambiguity: edges are never labelled by J;w when T s a
negated generator (i.e. A or B). When reading a composite automorphism (along
some path in Q) it is implicitly assumed that the reader will invert the automor-
phisms along any edges that are traversed in the direction opposite to their depicted
orientation. Finally, in light of equation (1), there is a natural bijection between v
and X U X L. For brevity, whenever an edge e is assigned a label {(e) = Y, €T
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for some x € X UX 1, we shall simply label e by the letter x in any figure in which
it appears.

.ab

® A
a @

T[a

a’ @
Figure 4: A small part of the automorphism graph (.

EXAMPLE 1.2.15. As a concrete example then, in the automorphism graph 1,
the conjugacy classes of a,ab,a, A% are represented by four distinct vertices. The
pairs of elements (a,ab) and (a?, A?) are connected by directed edges, labelled by a
and 7t,. These edges are present precisely because 1, ([a]) = [ab] and 7, ([a2]) = [A2].
Figure 4 shows the corresponding region of the Automorphism Graph ).

1.2.2. Permutation Equivalence. We will also consider the quotient graph
QO = (FQ ~I1 , %\p)

which is obtained by collapsing all vertices in 2 that are related by =y, and iden-
tifying any resulting parallel edges.

Since every permutation automorphism is in fact an automorphism, it follows
from Remark 1.1.2 (pp. 3) that u and v are in the same connected component of
if and only if us and va are in the same connected component of Q* = Q/=qy.
In what follows we will consider the structure of Q* as well as Q.

1.3. Shelling Orbits in  and Q*.

DeriNITION 1.3.1. For eac{z conjugacy class u in Fy, let Orb(u) denote the
orbit of u under the action of 1 where ¥ € Aut(Fs):

Orb(u) = {$(u) | ¢ € Aut(F2)}.

Clearly, F, is partitioned into such orbits. We denote by Orb* (u) the image of
Orb(u) under the projection map induced by ~y.

DEFINITION 1.3.2. Given a conjugacy class u in Fy we define the set of its
minimal representatives as

Min(u) = {w € Orb(u) | Yv € Orb(u), |lw| < |v|}.

Every linear order on X extends to a linear lexicographic order on F(X). Here we
will take B < A < a < b and shall denote the lexicogaphically smallest element of
Min(u) as u.

DEFINITION 1.3.3. A conjugacy class u in F is called minimal (in its orbit)
if w is in Min(u).
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DEFINITION 1.3.4. Let u be a conjugacy class in Fy. The level section of u,
denoted A(u), is the set of elements in Orb(u) which have the same length as u:

A(u) = {v € Orb(u) | |v| = |ul, v € Aut(F»)}.
The image of A(u) under the projection map induced by ~n is denoted as A*(u).

DEFINITION 1.3.5. For each n € N, we define the level n section of Q2 (resp.
0*) to be the subgraph induced by vertices representing conjugacy classes of length
n. We denote this subgraph as Q, (resp. Q). A subgraph G of Q is called a level
subgraph if G is a subgraph of Q,, for some natural number n.

DEFINITION 1.3.6. Let u be a conjugacy class in Fy. We denote the subgraph
of Q induced by vertices of A(u) as . The level neighborhood of u, denoted
B(u), is the connected component of Q. which contains verter u. The image of
B(u) under the projection map induced by =~ is denoted as B*(u).

Figure 5 (on the subsequent page) metaphorically depicts the relationship be-
tween u, and the sets B(u), A(u), Orb(u), Qy,, when |u| = n.

conjugacy classes of increasing length

Figure 5: How u, B(u), A(u), Min(u), Orb(u) and 2, lie inside the Automorphism
Graph Q.

While, in general, 2, need not be a connected graph, we have:

THEOREM 1.3.7 (Whitehead). For any conjugacy class in u in Fy, if u is
minimal then A(u) = B(u).

This is the content of Whitehead’s theorem [27, 28], and is perhaps most easily
understood in terms of the Diamond Property, given that the Whitehead automor-
phisms form a confluent rewriting system for automorphically conjugate elements
of a free group.

1.4. Overview of the Result. The main result of this thesis can be stated
now:

THEOREM 1.4.1 (Main Theorem). There are uniform constants C, N such that
for any u in Fy if |[u| > N and |B(u)| > C, then |B(u)| is at most 8|u| —
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A more precise statement and proof of this theorem appears on page 74 of this
manuscript. When this theorem is combined with Theorem 1.3.7 (pp. 9), it follows
that if « is minimal, then |A(u)| is bounded by 8|u| — 40. This gives an affirmative
answers to the conjecture of Miasnikov and Shpilrain in [17].

We will see that the bound of the previous theorem is tight, in the sense that
for all integers n sufficiently large, there exists an element u,, having length n with
the property that |B(uy)| is precisely 8|u,| — 40.

In addition, along the way, we will obtain considerable information about the
combinatorial structure of the graphs induced by B(u) and Orb(u), for an arbitrary
conjugacy class u in F,. This information will be crucial to sharper analysis of
algorithms for testing automorphic conjugacy in F5.

1.4.1. Outline of the Approach. The proof of Theorem 1.4.1 is carried out in
the following manner. We will begin by characterizing particular graphs which
cannot occur in ). Once a sufficiently rich collection of these graphs has been
proven to be forbidden, they will act as structural obstructions to the growth of
spanning trees inside any connected component of 2.

We will then give a description of maximal trees which do not contain any of
the forbidden graphs. For n sufficiently large (bigger than some uniform constant
N), it will be shown that maximal legal trees which avoid the forbidden graphs
must fall into one of two categories:

(i) Trees that are chains having fewer than n — 5 vertices (with a very par-
ticular simple and predictable edge label structure).

(ii) Trees that have a small number of vertices (fewer than some uniform
constant C).

We will conclude that any spanning tree of a connected component of (2 must
be a subtree of one of the afforementioned maximal trees. It follows that for an
arbitrary conjugacy class u in F5, B(u) must have a spanning tree that is a sub-
graph of one of the above maximal legal trees. Thus, corresponding to each of
the above cases, B(u) either has (i) very simple chain-like structure or (ii) is very
small. Finally, we will “pull back” the structural characterization of 27, to obtain
information about 2, and then ultimately, about I.

The remainder of this document is organized as follows: In Section 2, a general
combinatorial framework is established that is required to carry out proofs about
forbidden graphs in 2. Then in Section 3, this framework is employed to interpret
candidate subgraphs in the automorphism graph as combinatorial constraints on
conjugacy classes of F5. Showing a subgraph is forbidden then amounts to showing
that the corresponding system of combinatorial constraints is infeasible. In Section
4, algorithmic issues are discussed and the analysis of Whitehead’s algorithm is
tightened using the results of the prior sections. Section 5 surveys some of the
computational tools that were used to explore the automorphism graph Q*. Finally,
we conclude in Section 6.

2. Combinatorial Groundwork

As noted, our first goal is to characterize particular graphs that are forbidden
in 7. We begin by defining the universe of graphs which may or may not occur.

2.1. Hypothetical Subgraphs.
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DEFINITION 2.1.1. A hypothetical subgraph (of Q) is a directed graph G
(i) without vertex labels, (ii) whose edges are labelled by subsets of TI U ¥, where
(i1i) each vertex of G has the property that every element of TU W appears in the
label of at most one of its incident outgoing edges.

DEFINITION 2.1.2. We say that a hypothetical subgraph G of Q is realized (by
a subgraph G' of Q) if there exists an directed graph isomorphism of o : G — G’
which is an edge-label embedding, i.e. for which £(e) C £(o(e)) for all e € E[G].

DEFINITION 2.1.3. A hypothetical subgraph G of 2 is realized as a level
subgraph of Q if it is realized by by a subgraph G' of Q,, for some n.

EXAMPLE 2.1.4. Figure 6 shows a hypothetical graph G that is a chain of three
vertices connected by edges labelled ¢, (Note that in the illustration we follow the
conventions outlined in Remark 1.2.14, and label the edges simply by a). Then G
is realized in Q. In particular, we show two (of the many) realizations of G: the
one on the left is a realization of G as a level subgraph, while the one on the right
15 not.

a

o——=0

p

hypothetical graph G

4 - —
aBaBB
£ 25 [
5
a
§ abaB @——=@ abba
£ Q4 a
S aaBB
:
g a
i Q3 B @ =@ 2
8
Grealized asalevel subgraphin  Q G realized asa(not level) subgraphin ~ Q

Figure 6: An example of how a hypothetical graph G might be realized in Q.

DEFINITION 2.1.5. A hypothetical subgraph (of Q*) is a directed graph G*
without vertex labels whose edges are labelled by subsets of V.

DEFINITION 2.1.6. We say that a hypothetical subgraph G* of Q* is realized
in Q* if
(i) G* is realized by some subgraph G' of Q, where additionally
(i) no pair of vertices of G' are related by ~.
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In this event, we say that G* is realized by the subgraph G'/ = of Q*.

DEFINITION 2.1.7. A hypothetical subgraph G* of Q* is realized in a level
subgraph of Q* if it is realized by a subgraph G'| ~n of QO for some n.

EXAMPLE 2.1.8. Returning to Example 2.1.4, we see that although the conju-
gacy classes aaBB, abaB, abba realize G in ), they do not realize G in Q0*, since
two of the conjugacy classes are related by =~11. Specifically, since aaBB =y abba,
this violates condition (i) of Definition 2.1.6. Figure 7 shows that G is still real-
ized as a level subgraph of Q*, albeit in Q*g, by the conjugacy classes aaBBBB,
abaBBB, abbaBB. It is a straightforward exercise to verify that no two of these
conjugacy length 6 classes is related by =~m.

a

o—0

p

hypothetical graph G

a
abaBBB @———=@ abbaBB .
Q
6

aaBBBB

G realized asalevel subgraphin ol

conjugacy classes of increasing length

Figure 7: An example of how a hypothetical graph G might be realized as a level
subgraph of in Q*.

REMARK 2.1.9. It follows immediately from the previous definitions that if G*
is not realized in (2, then G* is not realized in Q*. However, if G* is realized in
Q, this does not necessarily imply that G* is realized in Q*, as the former is a
priori a weaker condition. We will see an example of such a graph G* later in
Proposition 3.2.5 (pp. 35).

2.2. Combinatorial Equations. Given a hypothetical subgraph G (of ),
the assertion that “G is realized as a level subgraph in 2, for some n” entails
strong constraints on the conjugacy classes that may appear as its vertices in any
realization of G.

In what follows, corresponding to particular hypothetical subgraphs G (of )
and vertex w € V[G], we will derive a system of combinatorial constraints on
Oy, which we will denote as Ag . The constraints Ag,, will be constructed so as
to have the following property:
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If graph G’ is any level subgraph of Q that is isomorphic to G via
a edge-label embedding o : G — G', then the conjugacy class o(w)
satisfies Ag, .

NoOTE 2.2.1. The system Ag,, will in general, not be a sufficient set of con-
straints; that is, if a conjugacy class wo satisfies Mg,y this will not imply that some
level neighborhood H of wo in  is isomorphic to G. Finding a necessary and suf-
ficient system of constraints might be too difficult in general; fortunately for our
objectives it is enough to find just a necessary set of constraints. Our strategy is
then as follows: show that Ag,,, is infeasible, and thus conclude that no level sub-
graph H of Q is isomorphic to G, i.e. that G is not realized as a level subgraph of
Q.

To give a formal definition of the combinatorial constraints which constitute
Ag,w, we need to introduce the next two functions.

DEFINITION 2.2.2. The counting function
ﬂ By x Fg — N

is defined so that (g, w) is the number of distinct (possibly overlapping) subsegments
that are found to be labelled by g within the cycle graph Og in a clockwise reading.!
For succinctness, we will frequently use the symmetrized counting function

@ : By x FQ - N
whose values are defined by
®(g:®) = Y g, b).
e=%1

EXAMPLE 2.2.3. Let W be the conjugacy class of babAABBaaB, whose cycle
graph is shown in the figure below.

LThe reader is advised that this is not the same as the number of cyclically reduced words w’ € F»
whose conjugacy class is w and that begin with subword g. This is most easily seen in the case
when w is a proper power of a cyclically reduced word g.
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Let g = aa. Then
#(g,w) = t(aa,[babAABBaaB]) =2, and
®(g9,w) = @(aa,[babAABBaaB]) = 3.

This can be seen by considering the cycle graph in Figure 2.2.3 and noting that
it contains precisely two distinct occurrences of aa and one occurrence of AA. Note
that in computing §(g,w) and @ (g, W), the cycle graph Oy is always constructed
using the cyclically reduced form of the word w.

Using # and (), a system of combinatorial equations Ag ,, will be constructed
relative to a distinguished vertex w of G. Specifically, Ag,, will be a system of
equations in one variable w,

)\1 (’U)) =0
)\2 (’UJ) =0
)\k (w) = 0
with each combinatorial equation Aj(w) (j =1,...,k) having the form

S ;- Hgiyw)
=0

where m; € N, n; € Z, g; € F5 are constants depending on G. A solution of Ag,
is a conjugacy class wo € Fy such that Aj(wo) =0 for every j =1,...,k.

In the next section (subsections 3.2 and 3.4) we will construct Ag,,, for very
particular classes of graphs and show that these systems of combinatorial equations
are infeasible, hence proving that the corresponding graphs are not realized as level
subgraphs of Q. First, however, we need to develop some combinatorial ground-
work describing the structure of conjugacy classes (viewed as cycle graphs), and
quantifying how the function § behaves when composed with powers of a basic shift
¥, € ¥. The remainder of this section is devoted to these objectives.

2.3. Basic Properties of . We seek to quantify how f behaves when com-
posed with powers of a basic shift i, € ¥. To start, we show that applying ¢, to
a conjugacy class w cannot alter the number of occurrences of z or 7! in w.

LEMMA 2.3.1 (Stability Lemma). For allw € F, z € XUX !, e € {—1,+1}
and i € 7,

Bz, Ppw) = f(zw)

PROOF. Base case when ¢ = 1: Starting with the cycle graph O,,, we apply
¥, graphically (i.e. without performing cyclic free reduction), and refer to the
resulting cycle graph as ¢,(0,). Clearly, when read clockwise, the number of
edges that are labelled z*¢ in ¢,(0,,) is the same as the number in O,,, namely
#(zte,w). Suppose, towards contradiction, that #(z¢,¥,w) < #(2z¢,w). Then in
any cancellation diagram that describes the transformation of t,(0,) into the
cycle graph Ozme there must be some occurrence of z¢ and x~¢ which mutually
cancel. We fix a cancellation diagram and use this to select the mutually cancelling
occurrences of x¢, £~ ¢ that are closest together in the graph @z(Ow). It follows
that zﬁz(Ow) is a cycle graph labelled by a word x€ - - £™¢ - v where either u or v:
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(i) Consists entirely of edges labelled by #, 27!, and
(ii) Freely reduces to the trivial word.
Suppose u satisfies (i) and (ii). Then %, (0,) contains z¢ - u -z as a subsegment
which freely reduces to 1, and the graphic pre-image of this segment is a subsegment
of O,, whose length is at least 2 and yet freely reduces to 1. This contradicts the fact
that cycle graph O,, was labelled by the cyclically reduced word w. The situation
when v satisfies (i) and (ii) is completely analogous.
Inductive step: Suppose #(x¢, i w') = #(z¢,w') for all w' € Fy. Then taking
w = ¢i 'w' and appealing to the previous argument, we conclude that
Bz ') = 4z '),
where by inductive hypothesis, the right-hand side is f(z¢,w'). By induction on 7,
the lemma is proved for i > 0.
By Remark 1.1.4 (pp. 3), 1, = ¢! _,, so applying the previous argument to
@Zw_l, the lemma is proved for 7 < 0. |

OBSERVATION 2.3.2. Take the basic shift automorphism ¥, and let w be an
arbitrary conjugacy class in Fy. An occurrence of Y7 la = aB might arise in Va (w)
in one of two ways: to see this, consider a cancellation diagram that describes the
transformation of Vg, (Oy) into the cycle graph 01;‘1"1)' Then aB can arise in Ozﬁaw
because of either

(1) an occurrence of aBB in O, or
(2) an occurrence of aBA in O,. Note that aBA is stable under ¢, and so
will always gives rise to an occurrence of aB under 1),.

In other words, v, 'a arises in 1,(w) either because of an occurrence of aBB =

¥, %a in w, or because of an occurrence of aBA = (¢;'a)a™1 in w.

The prior observation is merely an illustration of the following general result:

LEMMA 2.3.3. Let w in Fy be a conjugacy class, and 1, a basic shift. Compar-
ing the structure of conjugacy classes w and 1, (w) we find that every occurrence
of ¥, k¢ in 1, (w) arises in one of two ways.

(1) an occurrence of w;(kﬂ)xf

(2) an occurrence of [(v; *x)x~

mw, or
1 in w.

PROOF. Let € X° 6 € {+1,—1}. Consider the case when € = +1; then
¢, Fz = 2279, The subsequent argument is illustrated in Figure 8.

As described in Definitions 1.2.4 (pp. 4) and 1.2.6 (pp. 5), we denote the word
obtained by graphically applying ¥, to w without performing any reduction as
Y [w]. In other words, 1, [w] is the word obtained by replacing every occurrence
of z in w by 22°. Denote the freely reduced form of v, [w] as 1, (w).

By hypothesis, 1, (w) contains z#~%%. Fix any such occurrence as. Since 1, (w)
was obtained from v, [w] by free reduction, as has a preimage a; in ¢, [w]. Since
1 [w] was obtained by graphically applying ¥, to w, a; has a preimage o in w.

By Lemma 2.3.1 (pp. 14), ag, a1 and s all begin with z. Since 1), maps
z — zi’, it follows that ¢, [w] must be 2292+ From this, we get that
o = T o o, where ¢, maps o to a word beginning with z~*+1)_ Tt follows
that o is either £=0(*+1) or £=9% =1, Hence ay is either 2z~ %*+1) or gz 0%k~
The former is 17 ) z¢, while the latter is ()7 *z)z—!. This proves the case when
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€ = +1. The case when ¢ = —1 is completely analogous, and can be carried out
using the same figure reflected along the vertical axis. |
£kd
e by L X ap
o | |
B | |
= I I
B o
8 1 43S Rd oKE
S <t . - o1
‘l;]. ” 1 / /
(graphically) - 25 T
W —= %o
a0
Lkod
c wW \_X'>\\ X Gz
(] | |
VA
B o
8 Cx X0 o xko X0~ x
i lIJ[W] | = B B <— Gl
v 1 / /
(graphically) | ; Ak ; ,
X / X X GO
W | |
ap

Figure 8: Ways in which 97 ¥z may arise in ¢, (w).

The previous lemma suggests the next three definitions:

DEFINITION 2.3.4. For eachz € XUX ™!, e € {+1,-1}, and k€N, k > 1,
the two words

de — “17e
Swakye :f [(sz km)x 1]

€ = £1 are called 1)x-stable words of weight k. Note that Sz ke = Sz k,e-

The table below lists 1),-stable words of weight k, for x € X U X!, € €
{+1,-1}.

(@ le=+1[e=—1]

al aB¥A | abFA
b | bA*B | ba*B
Al AB*q | Abka
B || BA*b | Ba*b

DEFINITION 2.3.5. Given any w € Fy, z € XU X! and k € Z, define
—k 1 —k,—1
oty = { KD e D)

0

ifk>1
otherwise.
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The quantity s(w,, k) counts the total number of occurrences of Y%z and ¢ ¥z =1
in P, (w) that arise because of some 1), -stable subword (of weight k) inside w. Note
that for a fized natural number k, the quantity s(w,x, k) is expressible as a finite
expression in terms of the function §.

The following derived expression will also be useful.

DEFINITION 2.3.6. Given anyw € Fy, z € X UX ™! and i,j € Z define
i+j—1
s(w,z,i,j) = Z s(w,z, k)
k=i
The quantity s(w,x,%,j) counts the total number of 1,-stable words of weight k,
where i < k < i+ j. Note that for a fized natural numbers i and j, the quantity
s(w,x,1,7) is expressible as a finite expression in terms of the function .

The next lemma formalizes a combinatorial fact about basic shift automor-
phisms, which will be used many times as the foundation for inductive arguments
involving the f function.

LEMMA 2.3.7 (Exponent Transfer Lemma). For all w € ﬁ‘2, re€XUX1 and
i,j 20,
® @y 'z, Plw) = s(w,z,i,5) + ® @z, w)
PROOF. For each x € X%, ¢,6 € {+1,—1}, the definition of ¢, € ¥ implies
that

w—ixe — (:ci'_i‘s)e,

T

«/7;‘:{

It follows from Lemma 2.3.3 (pp. 15) that every occurrence of (z&~%) in ¢iw
corresponds either to:

and that for all j > 0

= (2299)¢
= I

8
o

(1) an occurrence of (zz(~#~9)¢ in w, or
(2) an occurrence of [(¢, *z)z~1]¢ in w, for some k =d,...,i+ 5 — 1.
But (z2(~#=79)¢ is the same as 1;¢~7z¢, so the number of occurrences of type (1)
is
D bWy e w).
e=+1
On the other hand, the number of occurrences of type (2) is
i+j—1
Z s(w,z, k),
k=i
which by definition equals s(w, x, i, j). The lemma is proved. a

Since we are interested in the interplay between the action of Aut(F) on F and
the length function on F), it is natural to ask about the “rate of change of length”
of a conjugacy class w, under powers of a basic shift ¢),. The last two lemmas
of the previous section can be used to determine a closed form expression for this
quantity.
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LEMMA 2.3.8 (Rate of Change of Length Lemma). For every w € Fy, z €
XUX 1 Y, e®andi>1,
[Wpwl = 9y el = @(w) = 2s(w,2,1,i = 1) + @ (¥, ‘z,w)].
PROOF. Let w' = Yi~Yw. Then [Yiw| — [¢ilw| = | (w')| — |w'|. Now for
any w' € F» it is straightforward to verify that
[Dow'| = #(&w') + 4@, w')
+2[f(z, w") + (27, w")]
—208(¢7 e, w') + Wz T w)]
lw'| = f(z,w") + @) + §(E,w) + 8@ ).
So it follows that
(2) [Piw| = [9i 7w = (2, i w) fﬁ(x_la pitw) .
=27z, ) + (7 e P w)]
Since 7 > 1, the Stability Lemma 2.3.1 (pp. 14) yields

B, 95 w) = (e, w)

for ¢ = +1, while the Rate of Change of Length Lemma, 2.3.7 (pp. 17) yields
>yt i w) = s(w,w,1,i— 1)+ Y (Y e, w).
e=%1 e=%1

Substituting into equation (2) above, the proof follows. d

In the case where ¢ = 1, the previous proposition takes a particularly simple
form:

COROLLARY 2.3.9. Forallw € Fy andz € X U X!
|¢ww| —|U)| = @(JI,UJ) —2@(¢;1w,w)

PROOF. By Lemma 2.3.8 (pp. 18), we know that for all w € Fy, ¢, € ¥ and

121
[Wpwl = 19y el = @(w) = 2sw,z,1,i = 1) + @ (¥, ‘z,w)].

But when i = 1, s(w,2,1,0) = 0, and so the corollary follows. a

2.4. Eliminating ,-Stable Subwords. Notice that if ¢ = 1, is a basic
shift automorphism, then subwords of a conjugacy class w that are ¢,-stable do
not influence whether |¢w| = |w|. On the other hand, 1),-stable words are being

counted by the s term in the statement of the Rate of Change of Length Lemma
2.3.8 (pp- 18):

|";zzw| - |’QZ;_111J| = @(JI,’U}) - 2[8(’11),.73, 177: - 1) + @( z_zwvw)]

Informally speaking, what we are about to do is eliminate the 1,-stable words
from w (since they are not relevant to the question of whether [fw| = |w|) and
then simplify the expression of the Rate of Change of Length Lemma 2.3.8 (pp.
18). Let us proceed to do this now, formally.
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DEFINITION 2.4.1. For each x € X UX 1, let us take
Ze ™ (oo | kN
to be a new set of letters. Let 7 = Z, U ZyUZs U Zp. Put FT def Fy, « F(Z) to be
the free product of F({a,b}) and F(Z).
To start, a close inspection of the table of 1,-stable words (pp. 16) reveals

OBSERVATION 2.4.2. For any fitedx € X U X!

(a) Onep,-stable word cannot be a proper subword of another v,-stable word.
(b) Two distinct v,-stable words cannot overlap inside w.

These two observations make the maps k, below well-defined.

DEFINITION 2.4.3. For each x € XUX !, we define a map kg : Sy e — Zg ks
where Sy i ¢ is one of the ¢, -stable words of weight k in Definition 2.3.4 (pp. 16).

Figure 9: How K, acts on a conjugacy class w.

The map K, replaces the two 1,-stable words of weight k by new letters z;}c

(see Figure 9). It follows that x, is a map from the conjugacy classes of F; to the
conjugacy classes of Fy x F(Z,) C F+. It will turn out that k, has several useful
properties which will make it beneficial to consider k. (@) in place of @ at various
points in our investigation of the structure of level neighborhoods in 2.

To express these properties formally, we shall first extend the § function in the
obvious way to all of Ft x F*. As in Definition 2.2.2 (pp. 13), for any g € F*
and @ € Ft, we define f(g,w) to be the number of distinct (possibly overlapping)
subsegments that are found to be labelled by g within the cycle graph Oy in a
clockwise reading.

Next, we extend s(w,z,i,j) to all w € F¥, z € XU X! 4,j € N. The
definition of s(w,z,4,J) is as in Definition 2.3.6 (pp. 17) except that we use the
extended f function defined above.

Finally, we extend the basic shifts 1, (pp. 3) to all of F't by making them act
identically on the free factor F(Z).

LEMMA 2.4.4. For eachw € Fo, € XUX !, and j €N
S(K’-’E(w)axalaj) = 0.
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PROOF. In k;(w), all ¥,-stable subwords of weight k have been replaced by
z;t}c By definition, s(k; (W), x,1,J) is the sum of s(k. (@), x,k) for k = 1,...,7.
But s(kz(w),x, k) counts ,-stable subwords of k(@) having weight k, and so is

0. The lemma is proved. a
LEMMA 2.4.5. For each w € F5 andz € X U X!
[Yzhie(D)] — ke (D) = |tp@| — ||

PrOOF. If u is a 1 -stable word, then v¢,(u) = u. Moreover, u begins with
z and ends with z7!. Combining this with Lemma 2.3.1 (pp. 14), we see that
1)-stable subwords in @ remain unaffected by application of ¢, . Similarly, because
1, was extended to act identically on the free factor F(Z) of F't, all occurrences
of zwi’}c also remain unaffected by application of v¢,.

Since k, replaced 1,-stable words of weight k£ by new letters z;t’}c, it follows
that 1,-stable subwords in @ partition the cycle graph Oy in precisely the same
way that occurrences of zf}c partition the cycle graph O, (3). Since k; does not
alter anything other than ,-stable words of w, it follows that ¥,k (W) is the same
as Kz, (). The assertion is proved. O

The next proposition is the “simplified” version of Lemma 2.3.8 (pp. 18), where

1,-stable words of weight k have been replaced by new free variables z;t}c

PROPOSITION 2.4.6. For eachw € F5, i e Nandz € XU X1,
[io] — vy to] = @, k(@) — 20 (¥ '@, ke (D))

The reader may wish to compare it with the statement of Corollary 2.3.9 (pp.
18) which asserted that: For allw € Fy and x € X UX 1

ow| — | = ®(z,w) - 20 %" z,w)

PROOF. (Proposition 2.4.6) By Lemma 2.4.5 (pp. 20)
|'(/~J;1D| - |,¢”);—1,u~)| = |’QZ;K,$(’U~J)| - |'l/~};_1’9z(w)|
Applying Lemma 2.3.8 (pp. 18) to k. (w) we get

|@Z;ij(’u~))| - |’(Z:Zcil"‘7$(/u~))| = @(.’L’,ij('lﬁ)) - 2[s(mz(u~)),m, ]_,i - 1) + @(&;zx, K‘w(w))]

By Lemma 2.4.4 (pp. 19)
$(kg(w),2,1,i —1) = 0.
This completes the proof. O

Frequently, we will translate a hypothetical subgraph G (and a vertex w €
V[G)) into constraints on &, (w) for some x € X* (rather than constraints on w
itself). In other words, we shall be constructing systems of combinatorial equations
AZ ,, with the property that

If graph G’ is any level subgraph of Q that is isomorphic

to G via an edge-label embedding o : G — G, then the

conjugacy class ,(o(w)) satisfies A, .
Our strategy will remain the same: to show that AZ , is infeasible, and hence
conclude that G is not realized as level subgraphs of .
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OBSERVATION 2.4.7. The following facts will be used later, and can be immedi-
ately verified by inspecting the table of 1, stable subwords on pp. 16. For any fized
zin XUXL:

(i) Every 1,-stable word has length at least 3.
(ii) A 1, -stable word and a 1, —1-stable word can overlap in 0 or 1 letters.

(iii) A 1, -stable word and a ;-1 -stable word can overlap in 0 or 2 letters.

(iv) A 1y-stable word and a vz-stable word can overlap in 0 or 2 letters.

2.5. z-Decompositions. To be able to carry out arguments about whether
or not a conjugacy w in Fy class can satisfy a given system of combinatorial equa-
tions, we will need some machinery to describe the internal stucture of w, or more
honestly, the structure of the cycle graph O,,. In this section, we introduce the
z-decomposition of a conjugacy class w € Fy, for each z € X U X L.

X—segments

x—blockers

Figure 10: An z-decomposition of w.

DEFINITION 2.5.1. Given a conjugacy class w € Fy and a letter v € X UX !
the x-decomposition of w is a decomposition of the cycle graph O, in which all
Yz -stable words are distinguished. Each occurrence of a 1,-stable word is referred
to as an x-blocker. More specifically, an occurrence of Sy k.41 s referred to as a
positive x-blocker of weight k and an occurrence of Sy 1,—1 is called a negative
x-blocker of weight k. The number of z-blockers in w is denoted N, = N (w),
and their weights will be denoted bf(w),...,b%, _;(w) respectively. Abusing the
notation, we will also refer to the ith blocker (considered as a subgraph of O )
as b7. When z is clearly understood from the context, we will omit the superscript
x and simply refer to the blockers and their weights as bo(w), ... ,bn,—1(w). We
denote the number of x-blockers in w having weight k, as N¥ = N¥(w). So N, (w) =

2k NE(w), where
Niw) = @izt w), and
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Mazimal sequences of edges in O, which lie entirely between two consecutive x-
blockers will be called x-segments. The x-segment between x-blocker i and x-
blocker (i +1) mod N, will be referred to as the ith x-segment, and will be denoted
s¥. When x is clearly understood from the context, we will omit the superscript x
and simply refer to the segments as so(w),...,sn,—1(w). Figure 10 illustrates an
x-decomposition of a conjugacy class w. Note that items (a) and (b) in Observation
2.4.2 (pp. 19) make the notion of an x-decomposition well-defined.

The proof of the following lemma is immediate, since every z-blocker contains
precisely one occurrence of ¢,—12¢ and precisely two occurrences of z=*.

LEMMA 2.5.2 (k; Lemma).

@(ww—lxaw) = Nw(w) +®(’$w—1$,f€z(w»
® (z,w) 2N (w) + @ (2, ko (w))
LEMMA 2.5.3 (Demarcator Structure Lemma). Given a conjugacy class w € FQ,
fix any £ € X U X', In an z-decomposition of w, consider two adjacent x-
blockers b;, b;11 witnessed in some fived clockwise reading of the cycle graph O,,.

Then, within the intervening segment s;, all occurrences of x—! must precede any
occurrences of x.

PROOF. Suppose the lemma, is false, towards contradiction. Then in s; there
is at least one occurrence of z which precedes some occurrence of z~!. Consider
the occurences of  and z~! having this property that are closest together inside
s;- Then these delineate a z-blocker inside s;. But this contradicts the definition
of b;+1 as the next blocker after b; in the z-decomposition of w. O

The previous Lemma 2.5.3 indicates that the structure of an z-segment must
necessarily be as shown below in Figure 11.

Figure 11: Demarcator between two z-blockers in the z-decomposition of w.

This leads us to the next definition.

DEFINITION 2.5.4. Fiz an x-decomposition of a conjugacy class w. Consider the
last occurence of t—' in s; and the first occurrence of x in s;. Then non-cancellation
between these two letters implies that there must be at least one occurrence of & or
#71 between them. The subsequence 2% or (271)% between the last occurence of z™*
in s; and the first occurrence of x in s; is called the ith x-demarcator and is said
to have weight d;. Abusing the notation, we will also refer to the ith x-demarcator
(considered as a subgraph of Oy ) as d;.

The previous definition immediately provides the following useful lemmas:

LEMMA 2.5.5 (Plus-1 Lemma). Given a conjugacy class w € Fy, and fized z in
Xux-t,

®@w) > TEMbi+d) > max (D0 +1), DN +1))
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Xx—demarcators

X—segments ——

x—blockers

Figure 12: Demarcators between blockers in an z-decomposition of w.

ProOF. If N;(w) is 0 the statement is trivial. Otherwise, between every con-
secutive pair of Z-blockers b and b7, the intervening Z-segment sy contains an

#-demarcator of length d?. Since b¥,d? > 1, the lemma follows. O

LEMMA 2.5.6 (Demarcator Lemma). Given a conjugacy class w € F,, and fized
reXUX,

B@w) > T2k + )N w)

PRrOOF. By Lemma 2.5.5 (pp. 22), ® (z,w) > Zé\fl(w) (b;+1). Regrouping this
summation according to blocker weight k yields the summation Y p- ; (k+1)N¥(w).
Since all blockers have weight at most |w| — 3, the summation has finite support

bounded by k < |w| — 3. O
For each positive ky € N, we have

LEMMA 2.5.7 (Tail Lemma at ko). Given a conjugacy class w € Fy, and fized
reXUX,

@ @,w) > k@ @i w)+ 520 k + )N w)

PROOF. We associate with each occurrence of 2% in w the maximal segment
of the form z** in which it lies. If we consider just occurrences of * which lie
inside #-blockers of weight k£ < k¢ and the corresponding #-demarcators, then by
the Demarcator Lemma 2.5.6 (pp. 23) we have that

ko—1

3) ®(@,w) > Y (k+1)Nf(w)

k=1

This counting however, does not consider occurrences of z* which lie inside
maximal segments of the form z** for k > ky. Of these, consider occurrences of
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which lie inside ¥£~! and occurrences of =1 which lie inside £2~*. Since k > ko,

#27% and 2F£~! cannot overlap with an #-blocker of weight k¥ < ko. By Lemma
2.5.3 (pp. 22), 2z % and 2¥2~! cannot overlap with any #-demarcators. Each
occurrence of £z % and z¥2~! thus contributes at least kg occurrences of z* that
were not counted in expression (3). This completes the proof. d

LEMMA 2.5.8 (Subword Lemma). Given a conjugacy class w € Fs, and fired
words g,h in Fy. If g is a graphic subword of h then

®@gw) =2 O w)

PROOF. Every occurrence of h* contains an occurrence of g=. |

LEMMA 2.5.9 (Squeeze Lemma). Given a conjugacy class w € Fy, and fired
words g, h in Fy. If g is a graphic subword of h satisfying

k
®(hw) > @(g,w)+2®(f,~,w)

for some elements f1,..., fr in Fy, then

fori=1,... k.

PRrROOF. By hypothesis, @ (h, w) > @ (g, w). So by the Subword Lemma 2.5.8
(pp- 24), ® (h,w) = ®(g,w). Since @ (f;,w) > 0fori=1,...,k, it follows that
® (f;, w) must all be identically 0. O

The next two definitions are required in order to be able to express further
inequalities satisfied by @).

DEFINITION 2.5.10. Given two words g, h in F» we say that g and h overlap
if
o There is a word f in F>, with |f| < |g| + |h|, such that both h and g are
subwords of f.

We say that g and h overlap properly if, in addition

e g is not a subword of h, and
e h is not a subword of g,

DEFINITION 2.5.11. Given a fized word g in Fy and x € XUX ™, we say that g
is x-blocker-immune if neither g nor g—' can properly overlap with an x-blocker.
The word g is called x-demarcator-immune if neither g nor g~ can properly
overlap with an x-demarcator. Finally, the word g is called self-immune if both g
and g~ both cannot properly overlap with both g and g~ *.

LEMMA 2.5.12 (Immunity Lemma). Given a conjugacy class w € F, x €
XUX™! and o fivred word g in Fy that is self-immune and -demarcator-immune.
Then

lw|—3

O@w) > Y (k+)N(w) + [ (z,9) B (g, ka(w))].-

k=1
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PROOF. The number of occurrences of * which occur either inside an -
blocker or inside an Z-demarcator is Y ,:i'l_ qk+1)N ¥(w). Of the remaining occur-
rences of ¥, some number occur inside words of the form g*. The total number
of occurrences of g in w is @) (g, w), but of these we consider only a subset, namely
the @ (g, ksw) occurrences which do not overlap with any @-blockers. Since g is
Z-demarcator-immune, no occurences of g from this subset can overlap with any
Z-demarcator. We have shown that there are ) (g, xzw) occurrences of g which
do not overlap with a Z-blocker or z-demarcator. Since g is self-immune, each oc-
currence of g* contributes () (z, g) distinct occurrences of z*. This introduces an
additional (@) (z,g) - ® (g, xz(w)) ocurrences of z*, yielding the expression in the
statement of the lemma. d

LEMMA 2.5.13. Given any conjugacy class w € F, and z € X UX 1,
Proo¥F. Fix any z-demarcator d;. Now consider the following two boundaries:

i. the boundary of d; with the last occurence of 27! in s; (or the boundary
of d; with b;y; if there are no occurences of z=! in s;).

ii. the boundary of d; with the first occurrence of z in s; (or the boundary
of d; with b; if there are no occurences of z in s;).

Then either [i] or [ii] must lie inside a word v,[};_ll x°. O

The truncation and extension functions introduced next will permit us to ex-
press more inequalities satisfied by @) .

DEFINITION 2.5.14. The truncation functions t,t, : F» — {a,b, A, B} as
follows:

ti(w) = the first symbol in w,
t.(w) = the last symbol in w.

where w is assumed to be written in freely reduced form.

DEFINITION 2.5.15. The extension functions e;, e, : F» — (Fy)? are defined
as:

e(w) = {cow|ce XUX\{t;(w)'}},
er(w) = {woc|ce XUX "\{t,(w) *}},
where, for concreteness, the sets are ordered lexicographically.

LEMMA 2.5.16 (Extension Lemma). Given a conjugacy class w € B, z e
XUX™ and a fized word g in Fy for which |w| > |g],

Hg,w) = Ypeeni®w) = Yoo @, w)

PROOF. Since |w| > |g|, any occurrence of g in w occurs as a proper prefix of
some word in e,(g) and as a suffix of some word in e;(g). The lemma is proved. O

LEMMA 2.5.17 (Symmetry Lemma). Given a conjugacy class w € B,z e
X UX~L. Suppose that every occurrence of x* occurs inside an x-blocker. Then
i. Every occurrence of x* occurs inside an x~'-blocker.
ii. Every occurrence of £* occurs inside an x-blocker or an x-demarcator.
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PROOF. If every occurrence of z& occurs inside an z-blocker, then w is of the
form

w = (&P Hzh ... (zzbizHab .. (xibhg ) g
So every occurrence of #+ occurs inside an z-blocker or an z-demarcator. Moreover,

we can rearrange the parenthesization to emphasize that

w = (z7'@%z) - lzbg)zbi (e ebe) - w0 (e et )3t

which shows that in the z~!-decomposition for w, every occurrence of z* occurs
inside an z~!-blocker. O

2.6. Asymptotic Behavior of Basic Shifts. The next proposition can be
interpreted as stating that for any basic shift ¢, and conjugacy class w, the length
of Yiw (as a function of i) has, in some sense, a first derivative which is non-
decreasing;:

PROPOSITION 2.6.1 (Non-Decreasing First Derivative). For all w € F» ¢) € ¥,
andi 23>0

[9tw] = 19 w| > [PTw] — [ wl
PROOF. Suppose ) = 1), for some z € X UX~!. By Lemma 2.3.8 (pp. 18)

[Piw| — [Pi 7 w| = #(z,w) + (=", w) ,
(4) - o =2[s(w,z, 1,0 — 1) + > 4, #(¢; 'z, w)]
[piw| — i w| = H(z,w) +i(z"w

)
—2s(w,2,1,j = 1) + 3 1y §(¥5 72, w)]
Now by hypothesis j < 4. Then, since ¢, 7z is a subword of 1 tz¢ (for e = £1),
B, ‘2 w) < (e, 2, w)

Consider the set of 1,-stable subwords of w having weight k, 1 < k < j—1. Tt
follows from Definition 2.3.6 (pp. 17) that this is a subset of the set of ¢,-stable
subwords of w having weight k', 1 < k' < i — 1. It follows immediately that

s(w,z,1,i—1) > s(w,z,1,5—1).
It is straightforward to verify that Y __, #(v7 92, w) — §(¢; ‘z¢, w) equals
Yy $w, Wz Fe)2™t) + f(w, 2(vz Fat))+
B(w, (¥, *2)z) + f(w, 7 (P, 27 1)).
Using Definition 2.3.6 (pp. 17) we compute s(w, z,1,7 — 1) — s(w,z,1,5 — 1) to be

(5)

i—1

(6) D bw, (W 2)a™) + (w, z (g *a ),

k=j

It follows immediately from expressions (5) and (6) above that
Z ﬁ(w;]m€7w)_ﬁ(¢;zx€7w) 2 S(w7x717i_1)_S(w7$7laj_1)'
e==+1

Finally, combining this inequality with expression (4), the proposition follows. O
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Having shown that |¢)*w| is a function with a non-decreasing first derivative, we
would like next to show that for 4 sufficiently small this derivative is non-positive,
while for ¢ sufficiently large, it is non-negative—this would permit us to conclude
that |¢)*w| has a unique minimum value. Towards this end, we introduce

DEFINITION 2.6.2. For each x € X U X!, define p, : Fy — 2N, s0 that

pe(w) = {i>0|4(, s, w) + 8%, 'z w) + s(w,z,i 1) # 0}
for each w € Fy. Since [, tx| =i+ 1 and all 1, -stable words having weight i — 1
are of length i + 1, it follows that p,(w) C {0,1,...,|w| —1}.

The next lemma implies that the derivative of [)?w| has a zero, and hence that
|4iw| attains a unique minimum value.

LEMMA 2.6.3 (Asymptote Lemma). For all w € Fy, and x € X U X ™1, there
exists a constant ¢ = c,(w) no greater than |w|, such that for all i € Z
[po(w) =0 V i>maxp,(w)] = [Piw| - |[Pi w| =
[pr-1(w) =0 V j<-maxp,-1(w)] = [P w| - Wlw]=—

PROOF. For w = 1, the lemma is trivially true, with ¢ = 0. So assume |w| > 1
We begin by proving the first implication. By Lemma 2.3.8 (pp. 18),

[Pow] = 195 'w| = f(w,w) + 4@ w)
_2[8(1‘075[5’ 1,i— 1) + Z ﬁ(¢;l$€ U))]

e==+1
When i > max p, (w), the definition of p, implies that #(¢; ‘z*!, w) = 0, and hence

(1) [Piw| = 95 w] = tz,w) + #@™",w) — 25w, z,1,i — 1) E ¢y (w).

Now, by definition

i—1
s(w,z,1,1—1) = stmk

and since i > max p, (w), it follows from the definition of p, that s(w,z,k) = 0 for
all k > max p,(w). Thus

max pg (w) [w|-1
s(w,z,1,i—1) = Z s(w,z, k) = Z s(w, z, k)
k=1 k=1

We have shown that if 4 > max p,(w), then in fact ¢;(w) as defined in (7) above,
depends only on w and is independent of . This proves the first implication.

To prove the second implication, we apply the previous argument to zﬁz-l, and
conclude that if j' > max p,—1 (w) then ﬁ(v,[};_j;xe,w) =0, and hence

07 w| — [ S| = f(a w) + H(@,w) — 28(w, 2,1, — 1) = ¢ (w).

By an analogous argument to the one above one sees that s(w,z, 1, j'— 1) is 1ndepen—

dent of j', provided j' > max p,—1(w). By Remark 1.1.4 (pp. 1.1.4), ¢ =97
so substituting j = —j', we conclude that when j < —max p,-1(w),

95w — [lw| = —cx (w)

which proves the second implication of the lemma. O
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The previous lemmas show that derivative of [)iw| is non-decreasing, and its
value becomes a non-positive constant for i sufficiently small and a non-negative
constant for i sufficiently large; hence |[¢)w| has a unique minimum value. These
conclusions are summarized visually by Figure (13), and were already reported, in
some form, by Whitehead in [27, 28]. We now continue the analysis further.

X

\ ‘lIJiW‘

R KW

Figure 13: How |¢).w| changes with i.

3. The Structure Within Levels

In remainder of this section, we will investigate the structure of level neigh-
borhoods B(u) (resp. B*(u)) in  (resp. Q*). Most of our results will be built
from Lemma 2.3.8 (pp. 18) and Proposition 2.6.1 (pp. 26). We will describe the
combinatorial conditions on a conjugacy class @ under are necessary in order for
[i5| = || for special classes of automorphisms ).

3.1. Level z*-Chains. In the previous section, Lemma 2.6.3 (pp. 27) showed
that |¢)*w| attains a unique minimum value as i is varied. However, this minimum
value need not be attained at a unique value of i; rather, the minimum value may
be achieved over a long contiguous segment of integer values. This leads us to

DEFINITION 3.1.1. For each x € X UX™!, k € N, If a conjugacy class w € Fy
satisfies

Vi,j € {0,1,...,k} distinct, Piw # lw
Vie {0,1,....k}, |[diw|=|w|

Then w is called a level x*-chain. The set of all z*-chains in Fy as Cye.

A level z*-chain is thus a conjugacy class which lies at the start of a (non self-
intersecting) path of length k in the graph ), whose vertices are distinct conjugacy
classes that are all of the same length, and that can be traversed by k applications
of ¢, (see Figure 14).

EXAMPLE 3.1.2. Recalling Example 2.1.4~(pp. 11), we note that the conjugacy
class w = [aaBB] is a level a®-chain, since 1,(w) = abaB and ¥?2(w) = abba are
all of length 4 and are distinct conjugacy classes.
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ik
I
i
1

increasing length
>>x
<€

Figure 14: A level z*-chain, w

Note that the previous definition does not preclude the possibility that a level
z*-chain may pass through distinct elements of F, that are related by permutation
maps. Thus while a level z*-chain is guaranteed to not self-intersect in the graph
Q, it may induce a self-intersecting trail in quotient Q*. This leads us to

DEFINITION 3.1.3. A level z*-chain w is called simple if it additionally satisfies
Vi,j € {0,...,k} distinct, )iw m Pw
We denote the set of all simple z*-chains in Fy as Sy C Cyi.

A simple level z*-chain is thus an 2*-chain which remains non-self intersecting
when it is projected into Q* via ~p (see Figure 15).

é k k ~
5 " /% /%
;°| Y [ T/ a
i - /fivs @ Ty %
h

incressing length

Figure 15: Two level z*-chains: w is simple, while u is not.

EXAMPLE 3.1.4. Recalling Example 2.1.8 (pp. 12), we note that the conjugacy
class w = [aaBB] is not a level simple a?-chain, since {2 (w) = abba is permutation-
equivalent to the conjugacy class w. However, wy = [aaBBBB] is a level simple
a®-chain, since 1, (w1) = abaBBB and 12(w;) = abbaBB are all of length 6 and
are distinct conjugacy classes, no two of which are related by a permutation map.
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3.2. Large-scale Obstructions. In this section we begin by describing a
system of combinatorial equations which captures the constraints on the internal
structure of conjugacy classes that are level z*-chains—recall that we view a con-
jugacy class w in terms of the corresponding cycle graph O, .

LEMMA 3.2.1. Given anyw € Fp, z€ XUX™, ¢, € ¥, and k € N,
weCw & @ r(w)) =
® (W, 'z, ko (w)) =
® (W5, Kz (w))
PRrRoOOF. By Proposition 2.6.1 (pp. 26) we know that
(Fi=1, k) Wl =[] & [Few] ] = 0 and [FEu] — |5 w] = 0
By Lemma 2.3.8 (pp. 18)
[ow| —lw| =0 & @2,k (w)) =20 (b, 'z, ks (w)) =0
[Dsw| — 95wl =0 & @ (2, ke (w)) =20 (¥ 2, kg (w)) = 0.

Combining the previous two equations completes the proof of the lemma. O

(
(

The previous lemma describes the combinatorial equations A ,, which must
be satisfied by k;(w) if w is indeed an z*-chain. The results of the lemma are
leveraged in the subsequent theorem to obtain an upper bound on the length of
(both simple and non-simple) level 2*-chains that may occur in Q.

In essence then, the Theorems 3.2.2 (pp. 30) and 3.2.4 (pp. 31) below gives a
characterization of certain forbidden graphs which are never realized in 2, and 2.
Figure (16) depicts these forbidden graphs. Because the sizes of these graphs is a
not constant with respect to n, we refer to them as large-scale obstructions.

n-1 n-5

b b

b b

b b

. 01 2 . n-1 . 01 2 . n-t
- a a a a a a - a a a a a a
by 5 by 2

by by g

blg blo

Figure 16: Large-scale obstructions: two graphs that cannot be realized in Q,, (left),
and two graphs that cannot be realized in Q7 (right).

THEOREM 3.2.2. For anyw € Fy and z € X%, 6 € {-1,+1}
I |w =22 andweCpr = k< |kz(w)—2
Proor. Part (I). By Lemma 3.2.1 (pp. 30), we know that

(Vi=1,....k) Wiwl=lw & 1O, k(w)=
(8) ® (7w, k0 (w)) =
® (¢; ", 0 (w))
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If ¥ = 0, then the lemma is trivially true since |w| > 2. If k > 0, then w € Cy»
implies Y, w # w, and hence @) (x, k;(w)) # 0. From this integer inequality it
follows that

® (2, ka(w)) > 2
and thus, by appealing to (8), we conclude that

Y OW kW) > 1

We have shown that the total number of x, =% in w is 2. Of these, the number
of z, x~1 which fall inside a subword of the form ¢ ¥z or 47 *z~! can be no more
than -, since

By "e) =@ P ') = 1
B dr ) = (e, 97 a7 = 0.
Then, since |, *z| = [¢;Fz~t| = k + 1, it follows that
(9) ko (w)| 2 y(k+1) +7=7(k+2)

Suppose (toward contradiction) that k > |k, (w)| — 2, then (9) would imply v < 1.
Then it must be that v = 0, and hence 3[® (z,ks(w)) = v = 0. But then
¥y w = w, which is a contradiction. So it must be that k < |k, (w)| — 2. We have
shown that w € Cur = k < |ko(w)| —2. O

The following classification of edge pairs in O,, will be used later.

DEFINITION 3.2.3. Given a conjugacy class w € Fy and two distinct edges e
and e of Oy, that do not lie inside any x-blocker. Then e; and ey are precisely one
of the following relationships (see Figure 17).

(1) UC, (Unified Circular with respect to x) if Ny(w) = 0.

(2) UL, (Unified Linear with respect to x) if Ny(w) > 0 and both ey, ez lie
in some r-segment s;.

(3) DL, (Disjoint Linear with respect to x) if Ny(w) > 0 and both e1, ez lie
in distinct z-segments s;, sj, 1 # J.

THEOREM 3.2.4. For anyw € Fy and x € X°, § € {—1,+1}

T) |w =22 andwelpe = k<|jw -2
(Irr) |w| =210, andw € Syr = k< |w| -6

ProOF. Part (I*). By Theorem 3.2.2 (pp. 30), we know that k < |k, (w)| — 2.
Since |k (w)| < |w], the assertion follows.

Part (IT*). Since Syr C Syr+1 it suffices to show that w € S,jw—s and |w| > 10
leads to a contradiction.

If ¥ = |w| — 5 and |w| > 10, then equation (9) imples

Sl w10

~ ~ ~ 2'
=3 STw[=35S7 <

So v € {0,1}. By the previous argument, y cannot be 0.
In the case v =1, we know the following about the structure of w:

(A) There are 2y = 2 occurrences of z, 271 in k. (w).
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Figure 17: Edges e; and ey in UL, (w1), in DL, (w;), and UC,(w-) relationships,
respectively.

Now there are three possible configurations in which these occurrences of z* can
occur inside k. (w), as per Definition 3.2.3 (pp. 31). Each of these configurations
are treated in turn; the Unified Circular case starting at pp. 32, the Unified Linear
case starting at pp. 33, and the Disjoint Linear case starting at pp. 35.

The Unified Circular Case:

In this case, since there are no z-blockers in w, k;(w) = w. Now since v = 1,
we note that

(A*) Now if there is one occurrence of z and one occurrence of z=! then there
is an z-blocker, a contradiction. So we know that either there are two
occurrences of z, or there are two occurrences of z7! in k, (w).

(B) There are v = 1 occurrences of ¢;*2¢, and v = 1 occurrences of 1, 1z¢,
for some z € X% and €, € {+1,—1}. Since ¢ 12¢ is a subword of ¢ ¥z,
there are no occurrences of ¢, 1z¢ except the one that occurs as a subword

of the occurrence of 1, kz¢ = (z37*9)e.

The facts (A) and (B) force the cyclic word w be of one of the following types:

Typel: ze€ X w = z&F-3P.x.30
Type2: z€X ' w = 2iF-3P-z-379
Typed: z€ X w = gkz Tl g 9.7t 5P
Typed: z€ X' w = g7kg=1.39.271.57P

where p,q € N satisfy
(10) (k+1)+p+1+4q=|uw|

Note that since k = |w| — 5, equation (10) implies that p+ ¢ = 3.
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Let us define

MEd -1 if 2| (k+p—q)
[%ﬂj otherwise.

[ Mt 2| (k+p—o)
J = [Hzﬂ-‘ otherwise.

Clearly ¢ and j are distinct. To show that ¢ and j in {0, ..., %k} we note that since
p+ q =3, it follows that —3 < p — ¢ < 3. From this we may conclude

ktp—g _ k=3 1 — vl _
—k+f’*q+1 i é+i - 2M5 i IS
2 X 2 2 X )
where the last two inequalities follow from our assumption that k + 5 = |w| > 10.
We will now show that 7 and j satisfy J;w 51 zﬁw, thereby contradicting the fact
that w € Se.
We begin by considering the case when w is Type (1). If 2 | (k + p — ¢) then

w;w — wi;fkfp+zwi.q+z
k+p— k+p—
= pp—(ktp— =141 L alg+ =51 1)

k k
+127+q +1).€Ei'( +12J+q _1)

= zz~¢

zﬁjw = g hPHiggati
x
= gz~ (ktp = l)x:f:(”kﬂz’_qﬂ)

k k
(BB —1) (R 1)

= z
Otherwise, 2 [ (k+p—¢q) and
Plw = gihoPtigget
xr

piOobo= | 5558 ]) (o [ 25572

k+p+ k+p+

zﬁw =  pp(k—ptipzati
pi— = [FHE1]) s (g [ FH572])

n_(ktpta 1 N
= (B L)

k+pt+q 1
Ft3),

In both these situations, the length-preserving automorphism 7#; € II satisfies
s (Ppw) = Plw

s0 iw ~p Ydw, and hence w € S,1wi—s, a contradiction. Thus, for words of Type
(1) of length > 10, w € S,« implies k < |w| — 6.

The proofs for words of Type (2), (3) and (4) are analogous, using the same
definitions for 7 and j.

Thus if w € F; is of length > 10 and w € S,x, then k < |w| — 6.

The Unified Linear Case:

In the unified linear case, the 2y = 2 occurrences of ¥ occur inside the same

z-segment. For concreteness, suppose they lie in the ith z-segment, i.e. between
z-blockers b;(w) and b1 (w).
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It follows then from the Demarcator Structure Lemma 2.5.3 (pp. 22), that
either
a; Two occurrences of x lie on the same side of the z-demarcator within the
T-segment.
a; Two occurrences of z~! lie on the same side of the z-demarcator within

the z-segment.
b. One occurrence of z~! and one occurrence of z lie on opposite sides of the
z-demarcator within the z-segment.

The possible configurations (a), (az) and (b) are shown in Figure 3.2.

Ad;
X

Figure 18: The unified linear case: Configurations a;, a;, and b.

Consider configuration (a;). Then two occurrences of x must occur in a subword
of the segment of the form z2 *12#~*2 where |\a| is maximal. First, note that
A1, A2 must be non-negative, since otherwise |th,w| > |w|. Now |w]| > 2+ A\ 4+ Ao +
(b; +2) + d;, and b;,d; > 1. Tt follows that A; + As < |w| — 6. Hence A; and A, are
each < |w| — 6. It follows that |zZ|$w|_5w| > |w|. In other words, w ¢ Cjw/-5, and
hence w & Sjwi-s.

Consider configuration (az). Then two occurrences of z=! must occur in a
subword of the segment of the form #* x713*2 2! where |\;| is maximal. First,
note that A\;, Ay must be non-negative, since otherwise |¢,w| > |w|. Now |w| >
24+ X1 + X2 + (b; +2) + d;, and b;,d; > 1. It follows that A\ + A2 < |w| — 6. Hence
A1 and Ay are each < |w| — 6. It follows that |@Z|$w|75w| > |w|. In other words,
w ¢ Cz\w|—5, and hence w ¢ Sz\w|—5.

Consider configuration (b). Then the Demarcator Structure Lemma 2.5.3 (pp.
22) implies that the occurrence of z=! precedes the demarcator and the occurrence
of z succeeds the demarcator. It follows that =! must occur in a subword of the
segment having the form #*z~! and x must occur in a subword of the segment
having the form z# *2, where |A;| and |\2| are maximal. First, note that A1, A2

1
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must be non-negative, since otherwise [(p,w| > |w|. Now |w| > 24+ A\ + A2 + (b; +
2) +d;, and b;,d; > 1. Tt follows that A; + A2 < |w| — 6. Hence \; and A, are each
< |w| — 6. It follows that |zZLw|_5w| > |w|. In other words, w & C,wi—s, and hence
w ¢ Sm\w|—5.

The Disjoint Linear Case:

In the disjoint linear case, the 2y = 2 occurrences of #* occur inside the
different z-segments. For concreteness, suppose one lies in the ith z-segment, i.e.
between z-blockers b;(w) and b;11 (w), while the second lies in the jth xz-segment,
i.e. between z-blockers b;(w) and bj1(w). The occurrences of z* must be opposed
by £ and #*2, where |A;|, |\2| are maximal. Now |w| > 2+ Ay + Ao + (b; +2) +
d; + (bj + 2) + dj, and b;,d;,b;,d; > 1. Tt follows that A; + A» < |w| — 10. Hence
A1 and A; are each < |w| — 10. It follows that |1ﬁ‘mw‘75w| > |w|. But if w & Cpw—s,
then w & S jwi-s.

Having considered the Unified Circular case the Unified Linear case, and the
Disjoint Linear case, we conclude that always |w| > 10 implies w € Sjwi-5. O

To see that the bound on the length of (not necessarily simple) z*-chains given
in Part (I) of Theorem 3.2.4 (pp. 31) cannot be improved, consider the conjugacy
class w of the word a? B¥ in F, and take ¢ = ¢,. Then ¢iw = a*>**B* are distinct
for alli = 1,...,k and have the same length as w. The next proposition shows that
the bound on the length of simple z*-chains given in Part (II) of Theorem 3.2.4
(pp- 31) also cannot be improved.

PROPOSITION 3.2.5. Forallk > 10 andz € X U X!
Syr-6 # 0

PROOF. Let w = a”bABAbb € I, with n = k — 6. We show that w € Sge—s.

Clearly, Yiw = a® bABAtibb. So for i = 0,...,|w| — 5, the elements iw
are all distinct, having length equal to |w|.

Suppose (towards contradiction) that there are distinct 4,5 € {0,1,...,|w| -5}
such that ma® *bABA*ibb = a" IbABA'*Ibb for some 7 € II. Since i # j,
is non-trivial. Since n > 4, for any i either a® ¢ or A'*? (or both) is of length
> 2. Since a™ 7 and A'*J are the only two uniformly labelled subsegments whose
length can exceed 2, it follows that 7 : @ — A. But then, since §(b, w) # §(B,w), it
follows that 7 : b+~ b and 7 : B — B. Hence, 7 = m,. But m,(a” " 'bABAtbb) =
A""ibaBaltibb is not conjugate to a® JbABA'Ibb, since the latter contains a
subword ABA while the former does not. We have arrived at a contradiction.

Thus, conjugacy class w = a®bABAbb (n > 4) is a witness to the existence of
B*_chains that precisely meet the bound of Theorem 3.2.4 (pp. 31). We remark
that examples of such maximal-length z*-chains can be easily constructed for all
re XUX L O

3.3. Level 0-Chains. In section 3.1, we considered basic shift maps ¢, for
r € X U X! These gave rise to the notion of level z¥-chains and simple level
z¥-chains in Q. Now, to deal with small-scale obstructions (i.e. obstruction whose
size is a constant independent of n) in a similar manner, we generalize z*-chains as
follows.

DEFINITION 3.3.1. Let 0 = 0(50|5|—1 " 0201 be a freely reduced word in F3,
where , 0; € XU X! fori=1,...,n. The composite shift automorphism 1, is
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defined as

def
wa é w0'|a|“'¢0'2¢0'1 :F2_)F2

As usual, 1, is defined to be the induced map on the conjugacy classes Fs.

DEFINITION 3.3.2. Let 0 € F> be a freely reduced word. A level o-chain is a
conjugacy class w € Fy satisfying

Vi, j € {1,...,|o|} distinct, iai...glw # 'lﬁaj...alw # w
Vi€ {0,1,....k}, [ .cyw| = |w]

We denote the set of all o-chains in F, as Cs.
DEFINITION 3.3.3. A o-chain is called simple if it additionally satisfies
Vi,j e {1,...,k} distinct, ¥g,..cyw #m @Z,,]....Ulw #n w
and the set of all simple o-chains in Fy is denoted S,.

DEFINITION 3.3.4. Let 0 € F5 be a freely reduced word. We say that o is
realized as a simple level chain in Q* if there exists a conjugacy class w € S, .

Let 0 € F» be a freely reduced word. We say that o is realized as a proper
simple level chain in Q* if there exists word o' € Fy which properly contains o as a
subword and a conjugacy class w € S,.

LeEMMA 3.3.5 (Chain Inversion Lemma). Let o € F> be a freely reduced word.
So=0 & S,-1=0.

PROOF. Suppose w € S,. Then let w' = ¢,w. Then w' € S,—1. The argument
for the reverse implication is identical since inversion is idempotent. |

LEMMA 3.3.6 (Alphabet Symmetry Lemma). Let o € F» be a freely reduced
word.

SU:@ & S; =0.

PRroor. Fix P to be a proof that w € S,. Let 13, the formal object obtained
from P by changing all a symbols to b, all b symbols to a, all A symbols to B, and
all B symbols to A. The Pisa proof that w € S;. The argument for the reverse
implication is identical since 7 is idempotent. |

3.4. Small-scale Obstructions. In contrast to Theorem 3.2.4 (pp. 31) of the
previous section, here we describe forbidden subgraphs of €2}, whose size is constant
(independent of n). We refer to such subgraphs as small-scale obstructions.
Specifically, we prove that each of the graphs depicted in Figure 19 can not be
realized in 2. Proving that each of these graphs is forbidden will once again
involve (i) translating the structure of the graph into a system of combinatorial
equations that are necessarily satisfied by one of its conjugacy classes w, and (ii)
proving that this set of combinatorial equations is infeasible. Each of these small-
scale obstructions is dealt with in turn.
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Figure 19: A menagerie of forbidden subgraphs, none of which can be realized in

Q.

3.4.1. Obstruction 1: The Forbidden Graph T,,,8. The vertices of Obstruction

Th0apB are named:

U1
(%]
U3
V4

¢B(v3).

The graph T,q.5 is depicted in figure 20.
We shall now deduce a set of constraints on the structure of the vertex vy.
Constraints from v;. Since |vg| = |@q(vo)| = |v1], it follows from Corollary 2.3.9

(pp. 18) that

(11)

@ (aa UO)

2@ (GB,’U(])-
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@ T

Figure 20: The Forbidden Graph Ty4,5-

Constraints from vs. Since |v1| = |@q(v1)| = |v2], it follows from Corollary 2.3.9
(pp- 18) that

@ (a7 Ul) = 2@ (aB, ’1)1).
We will now compute @ (a,v;) and 2@ (aB,v1), respectively. First, let us consider
® (a,v1). Since vy is ¢q(vo), it follows that

@(a7 1}1) = @(U’JUO)'

Now let us consider 2(f) (aB,v1). Since vy is ¢4 (vg), it follows that

2@(&B,’U1) = 2@(0’BA7UO) +2®(aB27U0)'

Thus |v1| = |¢g(v1)| = |ve| implies the following constraint on vy:

(12) @(aa UO) = 2@ (CLBQ,UO) +2® (ClBA,’UO).
Constraints from vs. Since |va| = |@q(v2)| = |vs], it follows from Corollary 2.3.9

(pp- 18) that
®(a,v2) = 2@ (aB,vs).

We will now compute @ (a,v2) and 2@ (aB,v2), respectively. First, let us consider
® (a,v2). Since vy is @q(v1), it follows that

®(a,v2) = @(a,v).
Since vy is @4 (v0), it follows that
®(a,v1) = @f(a,vo).
To summarize, we have shown that
®(a,v2) = @(a,v0).
Now let us consider 2(f) (aB,v2). Since vy is ¢q(v1), it follows that
2@ (aB,v;) = 2@ (aBA,v1)+ 2@ (aB?,v1).
Since vy is @4 (v0), it follows that
2@ (aBA,v1) = 2®(aBA,v)
2@ (aB?,v1) = 2@®(aB3,v) + 2@ (aB*A,vp).
To summarize, we have shown that

_ [2®(aB?,v0) + 2® (aB*A, vo)
20(@B,v2) = "o (aB;)l,fuo)] ’
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Thus |v2| = |¢e(v2)| = |vs| implies the following constraint on vy:

_[2® (aB?,v0) + 2@ (aB% A, vo)
(13) Olaw) = 5@ @BA,uw) |
Constraints from vy4. Since |vs| = |¢pB(vs)| = |va4], it follows from Corollary 2.3.9

(pp- 18) that

@(3103) = 2@ (BA, 1)3)'

We will now compute @ (B, vs3) and 2@ (BA, v3), respectively. First, let us consider
® (B, v3). Since v is ¢4 (v2), it follows that

@(3,1)3) = @(a,vz)—2®(aB,v2)+®(b,v2).

Since vg is @q(v1), it follows that

®B,v2) = =20 (aB,v1)+ ®(a,v1) + @ (b,v1)

@(av UQ) = @(aavl)

—2®(GB,U2) = —2@(&314,1}1) _2® (G’B27U1)'
Since v1 i8 ¢4 (v9), it follows that
@(b7vl) = @(b,’l}o) + @(G’:UO) - 2@(0’B7UO)
2@ (aa '1)1) = 2@ (aa UU)

—2®(aB?,v1) = —2@®(aB? vy) —2@® (aB?*A4,v)
—2@)(@3,1}1) = —2@((1314,1}0) - 2®(GB27U0)
—2® (aBA,v1) = =2 (aBA,uv).

To summarize, we have shown that

[3® (a,v0) — 2@ (aB>A, vo)
B —2® (aB,vo) — 2® (aB?,vq)
®B.vs) = 55 (@B 00) + B (b, v0)
—4® (aBA, ) ]

The contraints deduced at vertex vz can now be used to simply this expression.
Specifically, since

_ [2®(aB? vo) + 2@ (aB*4, vo)
®@w) = 9% (aBA,w) ) U

it follows that

[3® (a,v0) — 2@ (aB* A, vo) [ 2@ (aBA,vo) — 26 (a B2, vo)

- 2@ ((,IB, UO) - 2@ (G’B27 UO)
- 3 = +20(av) + @ (b, v)
RN s ~ 2 (aB, w) |

The contraints deduced at vertex vy can now be used to simply this expression.
Specifically, since

® (a,v0) = 2@ (aB?,v0) + 2@ (aBA, ),
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it follows that
[ -2 (aBA, v0) — 20 (aB?, )
+ 2@ (aa UO) + @(b: UO) = @(a,’l)o) + @(ba UU) - 2@ (aB,Uo).
- 2@ (GB,’U(]) ]

The contraints deduced at vertex v; can now be used to simply this expression.
Specifically, since

®(a,v0) = 2@ (aB,vo),
it follows that
®(a,v0) + @ (b,v0) — 2@ (aB,vo) = @ (b, v0)-
So, we see that
®(B,v3) = ®(b,vo)-
Now let us consider 2(}) (BA, v3). Since v3 is @, (v2), it follows that
20 (BA,v3) = 2@ (4%,v2) + 2@ (BA,v2).
Since vy is @4 (v1), it follows that
2@ (BA,v2) = 2@ (BA,v1) + 2@ (A% v1)
20 (4%,v2) = 2@ (AbA,vy).
Since vy is ¢4 (vg), it follows that
20(BA,v1) = 20(4% v0) + 2@ (BA, v)
2®(4%,v1) = 2@ (AbA,v)
20 (AbA,v1) = 2@ (Ab*A,vo).
To summarize, we have shown that

[ 2@ (BA, UO) + 2@ (AbAJ ’Uo)
+ 2@ (Ab2Aa UO) + 2@ (Az,’ljo) ] )

Thus |vs| = |¢s(vs)| = |vs| implies the following constraint on vo:

2@ (BA, ’1)3) =

[ 2@ (BA) UO) + 2@ (AbAa UO)

(14) © (b, vo) + 2@ (464, v0) + 2@ (A%, 00) |

Having determined the constrains on vy entailed by each of the vertices in
TowaB, We are now ready to prove the following proposition.

PROPOSITION 3.4.1. TphaaB is not realized as a level subgraph in Q) for n > 4.

PROOF. Suppose, towards contradiction that T,,,p is realized. Then there
exists a conjugacy class w € SgeaB-
Appealing to the Extension Lemma 2.5.16 (pp. 25), if |vg| > 2

@(BAa/UO) + @(A2,1)0) = @(G’;UO) - @(G’BaUO)‘
Applying this to simplify the constraints (14),

(15)D (b,v0) = 2@ (a,v0) + 2[-® (aB,vo) + @ (aBa,vo) + @ (aB%a,v)] .
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Appealing to the Extension Lemma 2.5.16 (pp. 25), if |vg| > 4
® (aB?,v0) + ® (aB*A,v0) = ® (aB*,v0) — ® (aBa, vo)
Applying this to simplify the constraints (13),
®(a,v0) = [2® (aB?,v) — 2@ (aB%a,v0) + 2@ (aBA,vo) ] .
Appealing again to the Extension Lemma 2.5.16 (pp. 25), if |vg| > 3

@(GBZ,/U()) + @(GBA,U()) = @(CIB,U()) - @(GB(J,,U())
SO

(16) @ (aa UO) = [ 2@ (GB,’U()) - 2@ (aBa, ’l)()) - 2@ (aB2a7 1)0) ] :
Combining equations (15) and (16), we see that

(17) @ (b,v0) = ®(a,v)
Now, by the Tail Lemma at ky = 3, we know that
(18) ®(b,v0) > 3®(aB?,v) +3® (aB?A,v) + 2@ (aBA, v).

On the other hand, the constraints (13) deduced at vertex vz together with (17)
tell us that

(19)  ®@®B,v0) = [2@(aB3 v0) + 2@ (aB%4,v) +2@® (aBA,v) ] .
Combining equations (18) and (19), we see that
0 > ®(@aB? )+ ®(aB*4,uv).
and hence that B (aB3,v9) = ® (aB?4,v) = 0.
The constraints (13) then reduce to stating that
®(a,v0) = 2@ (aBA,v).

It follows that every occurrence of a® occurs inside an a-blocker. This implies
that ¢,(w) = w, and hence that vo and v; coincide. Thus w & SpaaB- O

Appealing to the Chain Inversion Lemma 3.3.5 (pp. 36) and the Alphabet
Symmetry Lemma 3.3.6 (pp. 36), we obtain the following immediate corollary.

COROLLARY 3.4.2 (Obstruction 1). The sets SoaaB, Spasa, Swova, and SuBBB
contain no conjugacy classes of length > 4.

3.4.2. Obstruction 2: The Forbidden Graph T4 45- The vertices of Obstruction
Taaap are named: vy = ¢ a(vg), v2 = ¢a(v1), v3 = pa(v2), v4 = Pp(v3). The graph
T s a4p is depicted in figure 21.

@ TAAAb

Figure 21: The Forbidden Graph T'444p-

Following the same type of process that was carried out for Tooqn (see pp. 37-
40), we can derive a set of constraints on the structure of the vertex vg.
In particular, from the fact that |vg| = [¢p4(vo)| = |v1], we can deduce that
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(20) ®A,vw) = 20(AB,v).
Then, from the fact that |v1| = |¢a(v1)| = |va|, we can deduce that
(21) ®A,vw) = 2®(AB? vy) + 2@ (ABa,v).

Then, from the fact that |va| = |@a(v2)| = |vs|, we can deduce that

(22) ®(Av) = [2_’_@%%(3;%,311030;-]2@(143(1,%)

Then, from the fact that |vs| = |@p(vs)| = |v4|, we can deduce that

 [2® (A, v0) + 2B (AB2A, v)
(23) ®(B,w) = +2®(X20,vo)+2®(1431:,0®0)]'

Having determined the constrains on vy entailed by each of the vertices in
T4 44p, we are now ready to prove the following proposition.

PROPOSITION 3.4.3. The graph Taaap cannot be realized as a subgraph of 2,
forn > 4.

PROOF. Suppose, towards contradiction that T44 45 is realized. Then there
exists a conjugacy class w € Sa44p-
Appealing to the Extension Lemma 2.5.16 (pp. 25), if |vg| > 2,

® (aB, ) + ® (a*,v0) = ® (a,v0) — @ (ab, vo).
Applying this to constraints (23) from vy,
(24) ®(b,v) = 2®(a,ve) — 2@ (ab,vo) + 2@ (aba,vo) + 2@ (ab®a,vy)] .
Appealing to the Extension Lemma 2.5.16 (pp. 25), if |vo| > 4,
® (AB®,v) + ® (AB%a,v) = ® (AB?,v0) — ® (AB*A,v0)
Applying to constraints (22) from wvs,
®(a,v0) = [2@(AB?,v) —2® (AB?A4,v) + 2@ (ABa,vo) | .
Appealing again to the Extension Lemma 2.5.16 (pp. 25), if |vg| > 3,
®(AB?,v0) + ® (ABa,v) = ® (AB, v) — ® (ABA, v),
so in fact
(25) ®(a,v) = [2@(AB,v0) - 2@ (ABA,v) — 2@ (AB*4,v) ] .
Equation (24) implies that
® (b,v0) — 2® (a,v0) + 2@ (ab,v0) = 2@ (aba,vo) + 2@ (ab?a, vo)
while equation (25) implies that
—~®(a,v) + 2@ (ba,vo) = 2@ (aba,vy) + 2@ (ab’a,vy).
Combining these expressions we see that
(26) ® (b, v0) —2® (ba,v0) = @ (a,v0) — 2@ (ab, vo)
Appealing to the Extension Lemma 2.5.16 (pp. 25), we know that if |vo| > 2,
® (b,v0) — @ (ba,v0) = @ (bd,vo) + ® (bA, o)
®(a,v0) — D(ab,v0) = ®(aa,v0) + ®(aB,vo),
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Where by definition (&) (bA, v9) = @ (aB,v9). We can simplify (26) to
® (bb,v0) + ® (ab,v) = @ (aa,vo) + @ (ba,vo).
Appealing again to the Extension Lemma 2.5.16 (pp. 25), when |ug| > 2,
® (b, v0) + B (Ab,v0) = @ (a,v0) + @ (Ba, vo).
It follows that
@ (,v0) = ®(a,vo).
Now, by the Tail Lemma at ko = 3, we know that
(27) ®b,v) = 3®(AB3,v) +3® (AB?%a,v) + 2@ (ABa,v).
Combining (27) with the constraints (22)
® (b,v0) — ®(a,v0) > @ (AB%a,v) +® (AB?,v).
Since @ (b, v0) = @ (a,v0), we see that
® (AB%a,v) = ®(AB%,v9) = 0
Constraints (22) then reduce to stating that
®(a,v0) = 2@ (aBA,wp).

It follows that every occurrence of a® occurs inside an a-blocker. This implies
that ¢,(w) = w, and hence that vg and vy coincide. Thus w & Sa44p- O

Appealing to the Chain Inversion Lemma 3.3.5 (pp. 36) and the Alphabet
Symmetry Lemma 3.3.6 (pp. 36), the following is an immediate corollary of the
previous proposition.

COROLLARY 3.4.4 (Obstruction 2). The sets Saaab, SBaaa; SBBBa; SAbby CON-
tain no conjugacy classes of length > 4.

3.4.3. Obstruction 3: The Forbidden Graph T,.;. The vertices of Obstruction
Toap are named: v1 = @q(vg), V2 = o (1), v3 = Pp(v2). The graph Ty, is depicted
in figure 22.

® T

Figure 22: The Forbidden Graph T, ;.

Following the same type of process that was carried out for Tyqap (see pp. 37-
40), we can derive a set of constraints on the structure of the vertez vg.
In particular, from the fact that |vg| = |¢a(ve)| = |v1], we can deduce that

(28) ®(a,v0) = 2®(aB,vo).
Then, from the fact that |v1| = |@q(v1)| = |v2|, we can deduce that

(20) ®(a,v0) = 20 (aB? vo) + 2® (aBA, vo).
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Then, from the fact that |va| = |¢s(v2)| = |vs|, we can deduce that

(30) ® (b,vo) = [1%%1)(2532030;]2@(@14,%)

Having determined the constrains on vy entailed by each of the vertices in T4,
we are now ready to prove the following proposition.

PROPOSITION 3.4.5. Tyqup is not realized as a level subgraph of 0.

PROOF. Suppose, towards contradiction that T, is realized. Then there exists
a conjugacy class w € Sgqp-

Note that >4 is both a-demarcator-immune and self-immune. So by the Im-
munity Lemma, 2.5.12 (pp. 24),

(31) ® (b,v0) > 2@ (abA,vo) + 3@ (ab’A,vo) + 3® (> A, vo).
Combining (31) and (30), it follows that
0 > @(ab®4,v)+®0°A,v0),
and hence that &) (ab?>4,ve) = @ (b®A,v9) = 0. We have shown that

(32) @ (b7 UO) = 2@ (abA> UO)
By the Demarcator Lemma 2.5.6 (pp. 23), we know that

|w|—3
(33) @ (b,v0) = 2@ (abA,v0)+ Y (k+1)® (ab* A4, o).

k=3

Combining (32) and (33), we see that (&) (ab*A,vy) = 0, for all k¥ > 2. In other
words, all a-blockers must have weight 1.

Since aB? is a-demarcator-immune and self-immune, and all a-blockers are of
weight 1, the Immunity Lemma 2.5.12 (pp. 24) gives us that

(34) ®(®,v) > 2@ (abA,v0) + 2@ (aB?, ka(vo))-

But since all a-blockers have weight 1, all occurrences of aB? in vy must occur
inside k4 (vg). Thus, we have

(35) @ (b7 UO) = 2@ (abA7 UO) + 2@ (a‘Bz7U0)'

Combining this with (32), we can conclude that ) (aB?,vy) = 0. Applying this in
turn to (29), we see that

(36) ®(a,v0) = 2@ (abA,vo).
It follows that every occurrence of a® occurs inside an a-blocker. This implies
that ¢, (w) = w, and hence that vg and v; coincide. Thus w & S,ap- a

Appealing to the Chain Inversion Lemma 3.3.5 (pp. 36) and the Alphabet
Symmetry Lemma 3.3.6 (pp. 36), the following is an immediate corollary of the
previous proposition.

COROLLARY 3.4.6 (Obstruction 3). Syab, SBAA, Stba, and Sapp are empty.
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Figure 23: The Forbidden Graph Tyap.

3.4.4. Obstruction 4: The Forbidden Graph Taap. The vertices of Obstruction
Taap are named: vy = @da(vg), v2 = da(v1), v3 = ¢p(ve). The graph Taap is
depicted in figure 23.

Following the same type of process that was carried out for Touan (see pp. 37-
40), we can derive a set of constraints on the structure of the vertex vg.

In particular, from the fact that |vg| = [¢p4(vo)| = |v1], we can deduce that

(37) @ (A7 UO) = 2@ (ABa UO)'

Then, from the fact that |v1| = |pa(v1)| = |v2]|, we can deduce that

(38) ®(4,v) = 2®(ABa,vo) + 2@ (AB?, ).

Then, from the fact that |vs| = |@p(v2)| = |vs|, we can deduce that
_ [2®(aBA,v) + 2@ (aB?4,v)

(39) ®(B,v) = +2® (B*A, v0) ]

Having determined the constrains on vy entailed by each of the vertices in
Taap, we are now ready to prove the following proposition.

PROPOSITION 3.4.7. The graph Taap cannot be realized as a level subgraph of
Q*.

PROOF. Suppose, towards contradiction that T4y 4p is realized. Then there
exists a conjugacy class w € SaaB.

Note that B®A is both a-demarcator-immune and self-immune. So by the
Immunity Lemma 2.5.12 (pp. 24),

(40) ®(b,v0) > 2@ (aBA,vo) +3® (aB*A,v0) + 3® (b*A, o).

Combining (40) and (39), it follows that

0 > ®@B*4,v)+®(B*4,v),

and hence that B (aB2A,v9) = @ (B34, v9) = 0. We have shown that
(41) @ (b,v0) = 2®(aBA,vo)

By the Demarcator Lemma 2.5.6 (pp. 23), we know that

w|—3

(42) ®(b,v0) = 2@®(aBA, )+ Z (k+1)® (aB* A, vp).

k=3

Combining (41) and (42), we see that (}) (aB¥A,v) = 0, for all k > 2. In other
words, all a-blockers have weight 1.
The Tail Lemma 2.5.7 (pp. 23) at ko = 2 tells us that

(43) @(baUO) 2 2@ (ABG,, UO) + 2@ (ABQ,UO)'
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Combining (38) and (43), we see that @ (b,v0) = & (a,v9). On the other hand,
® (a,v0) = 2@ (aBA,vp). But @ (aBA,v9) = ® (b,v0). Thus, we conclude that
@(ba UO) = @(CLJUO)‘

Appealing to (41), we see that

@(a7 UO) = 2@ (G’BA7U0)
It follows that every occurrence of a* occurs inside an a-blocker. This implies,
by the Symmetry Lemma 2.5.17 (pp. 25) that every occurrence of a* occurs inside

an A-blocker. But then, ¢4(w) = w, and hence that vg and v; coincide. Thus
w & SAAB- O

Appealing to the Chain Inversion Lemma 3.3.5 (pp. 36) and the Alphabet
Symmetry Lemma 3.3.6 (pp. 36), the following is an immediate corollary of the
previous proposition.

COROLLARY 3.4.8 (Obstruction 4). Saan, Stea, SBBA, and Sepy are empty.

3.5. Obstruction Rewriting Rules, Part I. We will use the following
lemma to devise a graph rewriting rule that can be used to generate new forbidden
graphs from the ones we have found so far.

LEMMA 3.5.1 (The 22~ 'z Relation Lemma). For allz € XUX ' and w € F,
wzi—lz(w) R w.

PrOOF. When § = +1, the composite map ,;-1, takes

z = ziz~!

1

T = oz
Taking mg € II to be the map
r = &t
T — x,

we see that mo1,3-1,(w) = w and hence that 9,;-1,(w) ~n w.
When § = —1, the composite map ¥,;-1, takes

z = 7!

F = dxdTl.
Taking m; € II to be the map

~

T =
& = 27

we see that m11Y,z-1,(w) = w and hence that 1,31, (w) ~n w.
This completes the proof of the lemma. O

The 2~ 'z-Relation Lemma 3.5.1 (pp. 46) proved above can be leveraged to
provide a graph-rewriting rule for obstructions. A graph-rewriting rule 7 is a deter-
ministic procedure which produces a new hypothetical graphs from old hypothetical
graphs.

DEFINITION 3.5.2. A graph-rewriting rule T is conservative if for every hypo-
thetical subgraph T of Q*, T cannot be realized as a level subgraph of Q* if and only
if 7T cannot be realized as a level subgraph of Q*.
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Conservative graph-rewriting rules allow us to enlarge the set of forbidden
graphs from ones already known.

We define graph-rewriting schema 7, (x € X U X ') which act on the hypo-
thetical subgraphs of Q*. Before 7, can be made to act on a hypothetical graph T',
it must be parametrized by a suitable triple of vertices p,v,q € V[T].

DEFINITION 3.5.3. Given a hypothetical subgraph T of Q*, firx € X*, and let

v,D, q be three distinct vertices in V[T|. If v,p,q satisfy the following conditions:

® v,p,q are all distinct,

b "éw (p) =,

b ¢ﬁc (g) =q,

o (v,93-1(v)) € E[T],

* (¢r) €E[T]=r=p;
then we say that the triple (v,p,q) are a T,-pivot in T.

The graph-rewriting transformation 7, , 4 acts on T' as follows:

DEFINITION 3.5.4. Given a hypothetical subgraph T of Q*, fix x € X+, and
(v,p,q) a triple of vertices from V[T]. We define the graph T, , q(T) as follows:
If (v,p,q) are not a Ty-pivot, put Ty pq(T) = T. Otherwise, let T,y pq(T) be
given by:

V[Tm[v,p,q] (T)] = V[T] U {u}\{q}
where u is a new vertex representing ’l;i—l (v), and take
E[Tw[v,p,q] (T)] = E[T] U (U,U)\(p, q)a

where the new edge (u,v) is labelled by &~ (thereby signifying that u = z-1(v)).

The operation of 7, 4,q and Ty pq on T is depicted in Figure 24. In the
figure, boxed/outline edges are used to depict where edges are required to not be
present.

REMARK 3.5.5. Given a hypothetical subgraph T of Q*, a fived x € X% (§ =
+1), and three vertices v,p,q from V[T, it is easy to verify from Figure 24 that
the action of T, is invertible. Specifically, for every x € X* we have 7}

e[pv,a)
To=1[0,p,$, -1 (v)]"

The next proposition shows that the previously defined graph rewriting rules
7. (x € X U X 1) are conservative.

PROPOSITION 3.5.6 (Obstruction Rewriting Rule 1). Given a connected tree
T = (V,E) and p,v,q € V, x € X%, the tree T is forbidden in Q7 if and only if
Talp,v,q)(T) is forbidden in Q.

PROOF. If 7, 4 4(T) = T the statement is trivial. Otherwise, suppose that
T is not forbidden in 5. Let Q7 be a minimal induced subgraph of (2} which
contains an isomorphic copy of 7. Without loss of generality, we may take Qp to
be the graph induced by the isomorphic copy of T. Moreover, we identify T with
the isomorphic spanning tree of Q7.

Now, since ¢ = ¥3,-15(u), by Lemma 3.5.1 (pp. 46), we know that ¢ =~ u. It
follows that vertices v and ¢ coincide in Q. Since (u,v) is not in Qr and (p, q) is
not a cut edge of T, the operation of adding (u,v) and removing (p, q) gives rise
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q
q
b L
P a DV Tapwl p ab v
u
Tavpu
u \"

T

b[p,v,
b: [p.v,q]

Tapvpul

Figure 24: Graph rewriting rules 7, (z € X U X ~1).

to just a different spanning tree of Qp. It follows that 7., , 4(T') is a subgraph of
Qr, and hence a subgraph of .

To see the reverse, take T' = T,[,4,4(T). If T' occurs in €, then by the
previous argument, so must 7,-1[, ) (7’). But by Remark 3.5.5,

_ —1
Te=lv,pu] = Tz[p,v,q]'

So it follows that T occurs in 2} d

3.6. More Small-Scale Obstructions. We will make use of the graph-
rewriting rules introduced in the previous section to demonstrate another forbidden
graph.

3.6.1. Obstruction 5: The Forbidden Graph T,p,. The vertices of Obstruction
Tuba are named: vy = @q(vg), v2 = Pp(v1), v3 = Pa(v2). The graph Tpp, is depicted
in figure 25.

® T

Figure 25: The Forbidden Graph T,p,-

Following the same type of process that was carried out for Toaqn (see pp. 37-
40), we can derive a set of constraints on the structure of the vertex vg.
In particular, from the fact that |vg| = |¢a(ve)| = |v1|, we can deduce that

(44) ®(a,v0) = 2®(aB;w).
Then, from the fact that |v1| = |@p(v1)| = |v2|, we can deduce that
(45) @ (b,v) = 2@ 0°4,v0) + 2@ (abA, vo).
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Then, from the fact that |va| = |@q(v2)| = |vs|, we can deduce that

[ 2® (a2BA, ’Uo) +2® (baBA, ’Uo)
(46) ®(a,v0) = +2® (a®B?,v0) + 2@ (baB?,v0)
+ 2@ (aBaB?,v) + 2 (aBaBA, v) |

Our goal is to show that T,;, cannot be realized as a level subgraph of Q*| i.e.
that Sgpe = 0. We will show something slightly weaker, namely that if o € F5 is a
word which contains aba as a proper subword, then S, contains no conjugacy class
of length > 5. To do this, we will need the following lemma.

LeMMA 3.6.1. If a conjugacy class w of length > 5 is in Sgpe, then
® (aBa,w) = ® (BaB,w) =0
PROOF. Appealing to the Extension Lemma 2.5.16 (pp. 25), if |vg| > 5
® (baBA,v) + ® (baB?,v0) = @ (baB,vo) — ® (baBa,wvo),

® (@®*BA,v) + ® (a’B?,u0) = @ (a*B,v) — ® (a*Ba,vo)
® (aBaB?,v9) + ® (aBaBA,v) = @ (aBaB,v)— ® (aBaBa,u).

Substituting into (46), we see that

[ 2@ (baB7 UU) - 2@ (baBa7 UO)
(47) @(CL,’U()) = + 2@ (a2B,U0) - 2@(0’2‘80’7“0)
+2® (aBaB,vy) — 2@ (aBaBa, vp) |

Appealing to the Extension Lemma 2.5.16 (pp. 25), if |ve| > 3
® (baB,v) + ® (a®>B,v) = ® (aB,v0) — @ (BaB,vo).
Substituting into (47), we see that
[2® (aB,vo) — 2@ (BaB,vp)

(48) ®(a,v0) =  +2@ (baBa,vo) — 2@ (a° Ba, vo)
+2® (aBaB,vy) — 2@ (aBaBa, vp) ]

Appealing to the Extension Lemma 2.5.16 (pp. 25) differently, if |ug| >
@(G2B25U0) +@(b(lB2,’l)0) = (a32 ) @(BGB ;'UO),
® (a®BA,v) + ® (baBA,v) (aBA,v9) — ® (BaBA,v)
® (aBaB?,v) + @ (aBaBA, v) (aBaB,vg) — @ (aBaBa,vy).
Substituting into (46), we see that

[2® (aB2, vo) — 2@ (BaB, vo)
(49) ®(a,v0) = +2@(aBA,v) — 20 (BaBA,v)
+2® (aBaB,vy) — 2@ (aBaBa, vp) |

®
®
®

The constraints (44) deduced at vertex v; permit us to simplify (48) and (49)
and obtain

® (aBaB,v) = 2® (BaB,v) + 2® (baBa,ve)+
(50) ® (a®?Ba,v) + 2@ (aBaBa,v)
®(aBaB,vy) = 2@® (aBa,vo) + 2@ (BaB?,v9)+

2® (BaBA,v) + 2@ (aBaBa, vg)
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By the Subword Lemma 2.5.8 (pp. 24), we know that
® (aBaB,v) < 2®(BaB,v)
® (aBaB,v) < 2®(aBa,vp).
Combining with (50) we see that

2® (baBa,vo) + 2@ (a®Ba,v) + 2@ (aBaBa,vy) =
2® (BaB?,v) + 2@ (BaBA, v) + 2(® (aBaBa, vg)

Thus (50) reduces to
(52) ® (aBa,v0) = @ (aBaB,vo) = ® (BaB,vo)

Suppose, towards contradiction, that @ (aBa,w) > 0. Then fix some oc-
currence of aBa in w. Since @ (aBa,vo) = @ (aBaB,v), it follows that this
occurrence must be part of an occurrence of aBaB in w. Now, the next sym-
bol (after this occurrence of aBaB) cannot be A or B, since (51) tells us that
® (BaB?,vy) = @ (BaBA,v) = 0. It follows that the next symbol must be a-i.e.,
this occurrence of aBaB lies inside an occurrence of aBaBa. Repeating the ar-
gument inductively, for the second occurrence of aBa inside aBaBa, we conclude
that w is of the form (aB)* for some k € N. But then, if k > 0 [, (w)| < |w],
contradicting that |v| = |vo|. If k = 0, then 1), (w) = w, contradicting that v; and
vo are distinct vertices. We have shown that @) (aBa,w) = 0.

A symmetric argument to the one given in the previous paragraph can be used
to show that (@) (bAb,w) = 0. O

=

(51)

|
e

Having determined the constrains on vy entailed by each of the vertices in
Taaap, and that @ (aBa,w) = @ (BaB,w) = 0, we make the following assertion.

LEMMA 3.6.2. If a conjugacy class w of length > 5 is in Supa, then
® (a, w) = ® (b, w).

ProOF. Using the Extension Lemma to expand the constraints (28) deduced
at vertex vy, we see that if |vg| > 3,

®(a,v0) = 2@ (baB,vg) + 2@ (aaB,vg) + 2@ (BaB, vy)-
Using the Extension Lemma on the other side, we get that if |vg| > 3,
®(a,v0) = 2@ (aBA,v) + 2® (aBB,w) + 2@ (aBa, v).
By Lemma 3.6.1 (pp. 49), ® (aBa,vo) = 0, so
®(a,v0) = 2@ (aBA,v) +2® (aBB,vo)
which is, by the constraints (29) deduced at vertex va, equal to @ (b,vg). Thus
® (a,w) = ® (b, w). O

Having shown that &) (aBa,w) = @ (BaB,w) =0 and @ (a,w) = @ (b, w), we
are now ready to prove the following proposition. (The definition of “being realized
as a proper o-chain”, which was given in Definition 3.3.4 on pp. 36).

PRroOPOSITION 3.6.3. The graph Typ, cannot be realized as a proper simple chain
in a level subgraph of Q) if n > 5.

ProoFr. To prove this, we will consider the ways in which T, might appear
as a proper simple chain in an level subgraph of Q*. There are six ways:



L1.
L2.
L3.
R1.
R2.
R3.

It occurs as a trailing subgraph of Ty gpq-
It occurs as a trailing subgraph of Tggpq-
It occurs as a trailing subgraph of Tpupq-
It occurs as an leading subgraph of Typqq-
It occurs as an leading subgraph of Typep.-
It occurs as an leading subgraph of Typqp-

Each of these possibilities is depicted in Figure 26.

Figure 26: The six ways Ty, might appear as a proper simple chain.

R1

R2

R3
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The impossibility of each of these configurations will now be proven, in turn.
The cases L1, L2, R1, and R2 will be shown to be impossible using the Obstruction
Rewriting Rule 1 presented in Proposition 3.5.6 (pp. 47) and by appealing to
already-known forbidden graphs. The remaining cases L3 and R3 will be proved
separately using a combinatorial argument similar to the ones seen so far for showing
the particular graphs are forbidden.

Case L1: The tree T,4p, contains the tree Ty, as a subgraph. Hence, Ty 450

cannot be realized, since Ty, was shown to be forbidden in Corollary 3.4.6 (pp.

44). The argument is illustrated in Figure 27.

Taap isforbidden

Figure 27: Using graph rewriting to show case L1 is forbidden.
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Case L2: The tree Tges, cannot be realized, since applying a graph rewriting
rule transforms it into a graph which contains Tpp,. The latter graph is forbidden,
as a consequence of of Corollary 3.4.8 (pp. 46). The argument is illustrated in
Figure 28.

L2

Tppa isforbidden

Figure 28: Using graph rewriting to show case L2 is forbidden.

Case R1: The tree Typ,, contains the tree Ty,, as a subgraph. Hence, T 454
cannot be realized, since T}y,, was shown to be forbidden as a consequence of Corol-
lary 3.4.8 (pp. 46). The argument is illustrated in Figure 29.

R1

T isforbidden

baa

Figure 29: Using graph rewriting to show case R1 is forbidden.

Case R2: The tree T,,p cannot be realized, since applying a graph rewriting
rule transforms it into a graph which contains Tip,. The latter graph is forbidden,
as a consequence of of Corollary 3.4.8 (pp. 46). The argument is illustrated in
Figure 30.

R2

Topp isforbidden

Figure 30: Using graph rewriting to show case R2 is forbidden.

It remains to consider the cases L3 and R3. These are symmetric, so we shall
consider only the case R3. We shall show that the graph T,;,, cannot arise as
a level subgraph in Q*. We begin by deriving combinatorial conditions from the
graph, in a manner similar to the analyses conducted earlier.
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Subcase: The Forbidden Graph Typ.6. The additional vertex of Obstruction
Tabap is named: vg = ¢p(v3).

Following the same type of process that was carried out for Tyaap (see pp. 37-
40), we are able to deduce from fact that |vs| = |@s(v3)| = |val, that

[2® (abAb?A?,vo) + 2@ (abAbA, vo)

+ 2@ (b*AB, vo) + 2@ (abAB, o)
+ 2@ (abA?, vg) + 2@ (b2 Ab? A2, vy)

_ +2®(ab*AB,vo) + 2@ (b°A?, vo)

(53) ®(®,v) = + 2@ (B2 Ab2AB, vo) + 2@ (abAb? AbA, vy)

+ 2@ (ab? AbA, vg) + 2@ (B2 Ab2AbA, vy)
+ 2® (abAb?2 AB,vg) + 2@ (b3 AbA, vy)
+2® (ab® A%, vp) ]

Appealing to the Extension Lemma 2.5.16 (pp. 25), we know that if |vg| > 5,

® V*AB,wo) + ® (b*A%,00) = @ (°A,v0) — @ (b>Ad, vo)
@ (abA27 UO) + @ (abAB7 UO) = @ (abA7 UU) - @ (abAb7 UO)
@(abzAB,’Uo) + @(ab2A2aU0) = @(ab2Aa UO) - @(abzAb) UO)

Substituting into (53) and using the Extension Lemma, 2.5.16 (pp. 25) repeat-
edly, we see that if |vg| > 5,

(54) ® (b,v0) = 2® (b4, v0) + 2@ (abA, vo)
Since b3 A is a-demarcator-immune, by Immunity Lemma, 2.5.12 (pp. 24),
(55) ® (b,v0) > 3®(B3A,v0) + 2@ (abA, o)
Combining (54) and (55), we see that @) (b%A,v9) = 0. Thus,
(56) ®b,v0) = 2@ (abA,uvp).
Now appealing to Lemma 3.6.2 (pp. 50), we know that
(57) ®(a,v0) = 2@ (abA,wvp).

It follows that every occurrence of a* occurs inside an a-blocker. This implies
that ¢,(w) = w, and hence that vg and v; coincide. Thus w & Sapab-

This completes the case R3. The case L3 is completely symmetric and is omit-
ted. Since each of the cases L1-L3 and R1-R3 were handled, we can conclude that
Tabe cannot be realized as a proper simple chain in a level subgraph of 0* by any
conjugacy class with length > 5.

Proposition 3.6.3 is proved. O

By the Chain Inversion Lemma 3.3.5 (pp. 36) and the Alphabet Symmetry
Lemma 3.3.6 (pp. 36):

COROLLARY 3.6.4 (Obstruction 5). If o in F> contains aba, ABA, bab or BAB
as a proper subword, then S, contains no conjugacy class of length > 5.
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3.7. Obstruction Rewriting Rules, Part II. To find more forbidden sub-
graphs, we need some more sophisticated conservative graph rewriting rules that
extend the rewriting rules presented in Definition 3.5.4 (pp. 47). We will use the
following lemma as the foundation of these new extended rewriting rules.

LEMMA 3.7.1 (The 223~ 23! Relation Lemma). For all z € X and w € F,
Vizs—122 (’LU) cno w.
V25104 (w) cnoow.
ProoOF. By definition,
Vigs—102 = P30y °¢§1 0 %y 0 Yy
Thus,
r = z '3z
Vsas—tor = 2 - 'z lz iz

But '3z ~7 2 and 712 'z 13z ~ 7 27! It follows that 1);-1,3-1,2(w) ~m w.
For the second assertion, note that by definition,

Yy23-125 = YPgotPgo "p;@_l 0Py 0Pz,
Thus,

gl lgg

& &

—
—

8

ww%’v—lz:@ = {

But 271271z~ tzx ~7 27, Tt follows that 1,25-1,5-1(w) = w.
This completes the proof of the lemma. |

We define graph-rewriting schema p, (z € XUX 1) which act on the hypothet-
ical subgraphs of Q*. The schema p, generalizes the previously defined schema 7.
As before, for p, to act on a hypothetical graph T, it must be suitably parametrized
by a 3-tuple of vertices p,v,q € V[T].

DEFINITION 3.7.2. Given a hypothetical subgraph T of Q*, firx € X %), and let
v,D, q be three distinct vertices in V[T|. If v,p,q satisfy the following conditions:

e v,p,q are all distinct,
® 1@1 (p) = v,
* Yi(p) = ¢,
b (Ua @ézfc—l (U)) ¢ E[T]7
hd (q7 %—1(“))) € E[T]
then we say that the triple (v,p,q) are a p,-pivot in T.

DEFINITION 3.7.3. Given a hypothetical subgraph T of Q*, fixx € X° (§ = £1),
and v,p,q a py-piot in T. Define M,, M; be edge sets of cardinality <1 as

M, = { {(¢,92(q)) labelled by =} if (¢,92(q)) € E[T]

0 otherwise.

M = { {(¢,93(a)) labelled by 2} if (4,03 (q)) € E[T]
¢ 0 otherwise.
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Let u be a new verter representing 15,;.-1(1)), and hence not present in T'. Define
edge sets

{(u, -1 (u)) labelled by 2=}  if Sy # 0

(M) = { 0 otherwise.
N {(u, g1 (u)) labelled by 2=}  if Sz # 0
(M) = { 0 otherwise.

Let M(v,p,q) = M, U M and define pM (v,p,q) = p(M,) U p(Mj).
The graph-rewriting transformation py[p, .4 acts on T' as follows:
DEFINITION 3.7.4. Given a hypothetical subgraph T of Q*, fix x € X*, and

(v,p,q) a triple of vertices from V[T]. We define the graph pyy p.q(T) as follows:

If (v,p,q) are not a py-pivot, put pyypq(T) =T.
Otherwise, let py[y,p,q(T) be given by:

Vipafop (1] = VITTU{u}\{q}
where u is a new vertex representing 1;:@—1 (v), and take
E[px[v,p,q] (T)] = E[T] U pM(v,p, q)\M(v,p, Q)'

The operation of p,[p, ¢ and py[p,v,q o0 7' (in is depicted in Figure 31. In the
figure, boxed/outline edges are used to depict where edges are required to not be
present.

Pafvpul
Yo t-0 2 .V
Poipyv.ql biu bi
Y z P q
Paivpul

Figure 31: Extended graph rewriting rules p, (zx € X U X ~1).

REMARK 3.7.5. It is straightforward to verify from Figure 31 that each of the
operations is invertible. Specifically
-1
pa[p’v7q] = pA[v,p,u]

—1
Pbipv,g) = PBlupaul-
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The next proposition shows that the previously defined graph rewriting rules
pe (x € X UX 1) are conservative.

PROPOSITION 3.7.6 (Obstruction Rewriting Rule 2). Given a tree T = (V, E)
andv,p,q €V, x € XNX 1, the tree T is forbidden in 0, if and only if pyy,p,q (T)
is forbidden in 0},.

PROOF. If pypp4,q(T) = T the statement is trivial. Otherwise, suppose that
T is not forbidden in €. Let {27 be a minimal induced subgraph of Q) which
contains an isomorphic copy of 7. Without loss of generality, we may take Qr to
be the graph induced by the isomorphic copy of T. Moreover, we identify T with
the isomorphic spanning tree of Q.

If 1, (¢) € V[T let us call this vertex z*. If ¢z (q) € V[T] let us call this vertex
y*. I ahy—1(u) € V{pa[p,v,q (T)] let us call this vertex y. If Yz-1(u) € V{pap,v,q (T)]
let us call this vertex z. In other words, if these vertices are present they satisfy:

2t = @Zw (q)

1/;@ (9)
s

*

y =

-1(u)
= zﬁj—l(u)-
Now, since ¢ = ¥;3,-14(u),
Y = Yaze-150(y)
25 = Yrpe-152(2)
By Lemmas 3.5.1 (pp. 46) and 3.7.1 (pp. 54), we know that
q ~n u
y ~n y*

z o 2*

X

It follows that three pairs of vertices v and ¢, y and y*, z and z* actually coincide
in QT.

Thus, adding edges pM (v, p, q) and removing edges M (v, p, q) merely gives rise
to a different spanning tree of Q7. It follows that pg[p . 4(T) is a subgraph of Qr,
and hence a subgraph of Q.

To see the reverse, take T' = p,[p0,q(T). If T' occurs in Qj then by the
previous argument, so must p,-1[y.,)(7"). But by Remark 3.7.5 (pp. 55),

_ -1
Pe=to,pul = Polpu,q-

So it follows that 1" occurs in €2,. O

3.8. Still More Small-Scale Obstructions. We will make use of the graph-
rewriting rules introduced in the previous sections to demonstrate more forbidden
graphs.

3.8.1. Obstruction 6: The Forbidden Graph Topap- The vertices of Obstruction
Tupap are named vy = ¢4(vo), v2 = @p(v1), v3 = pa(v2), v4 = ¢p(vs). The graph
T.ap is depicted in Figure 32.

We are now ready to prove the following proposition.

PrOPOSITION 3.8.1. The graph T,pap cannot be realized as a proper simple
chain inside Q0 if n > 5.
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3 a V2
6
O Tens . b
V4 VO
w2 1

Figure 32: The Forbidden Graph Ty pap.

ProoF. To prove this, we will consider the ways in which T,;4p might appear
as a proper simple chain in an level subgraph of Q*. There are six ways:

L1. Tt occurs as an trailing subgraph of Tyap4B-
L2. It occurs as an trailing subgraph of Ty.paB-
L3. It occurs as an trailing subgraph of TrapaB-
R1. It occurs as a leading subgraph of T,pap4-
R2. Tt occurs as a leading subgraph of T,p4BB-
R3. It occurs as a leading subgraph of Typ4B4-

Each of these possibilities is depicted in Figure 33.

(LY (R1)
(L2 TbabAB (R2)
Ys. a v, Yag a v,
R T
*3) TBabAB b ) ®Y Tonsa b 4 )
v4 VO v4 ;
\"
w_ @ 1 WVOa 1

Figure 33: The six ways T,54p might appear as a proper simple chain.

The impossibility of each of these configurations will now be proven, in turn.
The cases L1, L2, R1, and R2 will be shown to be impossible using the Obstruction
Rewriting Rule 1 presented in Proposition 3.5.6 (pp. 47) and by appealing to
already-known forbidden graphs. The remaining cases L3 and R3 will be proved
using the Obstruction Rewriting Rule 2 presented in Proposition 3.7.6 (pp. 56).
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Case L1: The tree T,ap4p contains the tree Ty, as a subgraph. But e
cannot be realized, because of Corollary 3.4.6 (pp. 44). Hence, Toap4p cannot be
realized. The argument is illustrated in Figure 34.

Figure 34: Why the L1 case (T,ap4B) is forbidden.

Case L2: The tree Tpepap contains the tree Tpep as a proper simple subchain.
But Tpep cannot be realized, because of Corollary 3.6.4 (pp. 53). Hence, ThopaB
cannot be realized. The argument is illustrated in Figure 35.

Figure 35: Why the L2 case (Thapap) is forbidden.

Case R1: The tree Tp4p4 contains the tree T4p4 as a subgraph. But Tapa
cannot be realized, because of Corollary 3.6.4 (pp. 53). Hence, T,p454 cannot be
realized. The argument is illustrated in Figure 36.

Figure 36: Why the R1 case (T,p4p54) is forbidden.

Case R2: The tree Typ4pB contains the tree Tgp 4 as a subgraph. But Tspa
cannot be realized, because of Corollary 3.4.8 (pp. 46). Hence, Typ4pp cannot be
realized. The argument is illustrated in Figure 37.

It remains to consider the L3 and R3 cases. To show that Typ45, and TBepaB,
we will use the extended graph rewriting rules 7, and p, described in Definitions
3.5.4 (pp. 47) and 3.7.4 (pp. 55) respectively.

Case L3: The tree Typ454 can be rewritten using two appliations of 7 and
one application of p to produce a graph which contains the tree Ty,, as a subgraph.
But Ty, cannot be realized, because of Corollary 3.4.8 (pp. 46). Hence, TypaB4
cannot be realized. The argument is illustrated in Figure 38.
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Figure 38: Why the L3 case (Typap54) is forbidden.

Case R3: The tree Typ454 can be rewritten using two appliations of 7 and
one application of p to produce a graph which contains the tree T, as a subgraph.
But Typp cannot be realized, because of Corollary 3.4.8 (pp. 46). Hence, TupaB4
cannot be realized. The argument is illustrated in Figure 39.

Since each of the cases L1-L3 and R1-R3 were handled, and the corresponding
graphs shown to be forbidden, we can conclude that Ty, 4p cannot be realized as a
proper simple chain in a level n > 5 subgraph of Q*.

Proposition 3.8.1 is proved. |

By the Chain Inversion Lemma 3.3.5 (pp. 36) and the Alphabet Symmetry
Lemma 3.3.6 (pp. 36):

COROLLARY 3.8.2 (Obstruction 6). If o in F» contains abAB or baBA as a
proper subword, then S, contains no conjugacy classes of length > 5.

3.8.2. Obstruction 7: The Forbidden Graph TaBa.,. The vertices of Obstruction

TaBap are named: v = @a(vg), v2 = ¢p(v1), v3 = P (v2), V4 = ¢p(v3). The graph
T ABqp is depicted in Figure 40.
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Figure 40: The Forbidden Graph T4pgp-

We are now ready to prove the following proposition.

PROPOSITION 3.8.3. The graph Tapay cannot be realized as a proper simple
chain as a level subgraph in Q) for n > 5.

ProoFr. To prove this, we will consider the ways in which T4 . might appear
as a proper simple chain in an level subgraph of Q*. There are six ways:

L1.
L2.
L3.
R1.
R2.
R3.

It occurs as an trailing subgraph of T, 4pgp-
It occurs as an trailing subgraph of Ty4pqp-
It occurs as an trailing subgraph of Tpapap-
It occurs as a leading subgraph of Tapgpa-
It occurs as a leading subgraph of Tap.B-
It occurs as a leading subgraph of T4Baba-

Each of these possibilities is depicted in Figure 41.

The impossibility of each of these configurations will now be proven, in turn.
The cases L1, L2, R1, and R2 will be shown to be impossible using the Obstruction
Rewriting Rule 1 presented in Proposition 3.5.6 (pp. 47) and by appealing to
already-known forbidden graphs. The remaining cases L3 and R3 will be proved
using the Obstruction Rewriting Rule 2 presented in Proposition 3.7.6 (pp. 56).
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Figure 41: The six ways Tapqp might appear as a proper simple chain.

Case L1: The tree T, aBqp contains the tree T,,p as a subgraph. But Tjh.p
cannot be realized, because of Corollary 3.4.6 (pp. 44). Hence, Ty aBqp cannot be
realized. The argument is illustrated in Figure 42.

Figure 42: Why the L1 case (TyaBap) is forbidden.

Case L2: The tree Ty apqp contains the tree Ty as a proper simple subchain.
But T}qp cannot be realized, because of Corollary 3.6.4 (pp. 53). Hence, ThaBab
cannot be realized. The argument is illustrated in Figure 43.

Case R1: The tree Tapqpa contains the tree T4pa as a subgraph. But Tapa
cannot be realized, because of Corollary 3.6.4 (pp. 53). Hence, Tapapa cannot be
realized. The argument is illustrated in Figure 44.

Case R2: The tree Tapq.pp contains the tree Tgp 4 as a subgraph. But Tppa
cannot be realized, because of Corollary 3.4.8 (pp. 46). Hence, Tapapp cannot be
realized. The argument is illustrated in Figure 45.

It remains to consider the L3 and R3 cases. To show that T'Apape and T ABab,
we will use the extended graph rewriting rules 7, and p, described in Definitions
3.5.4 (pp. 47) and 3.7.4 (pp. 55) respectively.
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(L2

Figure 45: Why the R2 case (Tapaba) is forbidden.

Case L3: The tree Tapqap4 can be rewritten using two appliations of 7 and
one application of p to produce a graph which contains the tree Ty,, as a subgraph.
But Ty, cannot be realized, because of Corollary 3.4.8 (pp. 46). Hence, Tapaba
cannot be realized. The argument is illustrated in Figure 46.

Case R3: The tree Taupapa can be rewritten using two appliations of 7 and
one application of p to produce a graph which contains the tree T, as a subgraph.
But T, cannot be realized, because of Corollary 3.4.8 (pp. 46). Hence, Tapaba
cannot be realized. The argument is illustrated in Figure 47.

Since each of the cases L1-L3 and R1-R3 were handled, and the corresponding
graphs shown to be forbidden, we can conclude that T4, cannot be realized as a
proper simple chain in a level n > 5 subgraph of Q*.

Proposition 3.8.3 is proved. O

By the Chain Inversion Lemma 3.3.5 (pp. 36) and the Alphabet Symmetry
Lemma 3.3.6 (pp. 36):

COROLLARY 3.8.4 (Obstruction 7). If o in Fy contains ABab or BAba as a
proper subword, then S, contains no conjugacy classes of length > 5.

3.8.3. Obstruction 8: The Forbidden Graph T,p,. The vertices of Obstruction
ToBa are: v = ¢o(vg), v2 = ¢p(v1), v3 = @o(v2). The graph T,p, is depicted in
Figure 48.
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Figure 46: Why the L3 case (Tapaba) is forbidden.

Figure 47: Why the R3 case (Tyapqp) is forbidden.

We are now ready to prove the following proposition.

PROPOSITION 3.8.5. The graph T,p, cannot be realized as a level subgraph of
O*.
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® T

Figure 48: The Forbidden Graph T, p,.-

PRrOOF. Suppose T, g, occurs as depicted in Figure 48. Then, by Lemma 3.5.1
(pp- 46), vo ~m vs. It follows that in Q* are the same vertex. Hence the subgraph
T,.Ba cannot occur be realized in Q* (at all), and hence certainly cannot be realized
as a level subgraph of Q*. O

By the Chain Inversion Lemma 3.3.5 (pp. 36) and the Alphabet Symmetry
Lemma 3.3.6 (pp. 36):

COROLLARY 3.8.6 (Obstruction 8). Sups = Sapa = Spas = Spap = 0.

3.8.4. Obstruction 9: The Forbidden Graph T,,pa. The vertices of Obstruction
TuaBA are named: vy = @q(v0), va = o (v1), v3 = dB(v2), v4 = Ppa(v3). The graph
TooBA is depicted in Figure 49.

9
@ Teen

Figure 49: The Forbidden Graph T,,54-

We are now ready to prove the following proposition.
PROPOSITION 3.8.7. Tyapa cannot be realized as a level subgraph of Q.

PRrROOF. Suppose T,,p4 occurs as depicted in Figure 49. By applying the p
graph rewriting rule once (see Figure 50), we can produce a graph which contains
Topy, which by Corollary 3.4.8 (pp. 46), cannot be realized as a level subgraph of
Q*.

Since p is a conservative rewrite rule, we know that T,,p54 also cannot be
realized as a level subgraph of Q*. |

By the Chain Inversion Lemma 3.3.5 (pp. 36) and the Alphabet Symmetry
Lemma 3.3.6 (pp. 36):

COROLLARY 3.8.8 (Obstruction 9). SeaBA = Sapaa = SppaB = SpaBB = 0.

3.8.5. Obstruction 10: The Forbidden Graph Taap.. The vertices of Obstruc-
tion Taap, are named: vy = ¢a(vg), v2 = Ppa(v1), v3 = Pp(v2), V4 = ¢o(v3). The
graph T4 a3, is depicted in Figure 51.

We are now ready to prove the following proposition.

PROPOSITION 3.8.9. The graph Taap, cannot be realized as a level subgraph of
O*.
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Figure 51: The Forbidden Graph T4 4pq-

PROOF. Suppose T44p, occurs as depicted in Figure 51. By applying the p
graph rewriting rule once (see Figure 52), we can produce a graph which contains
Tbaa, Which by Corollary 3.4.8 (pp. 46), cannot be realized as a level subgraph
of *. Since p is a conservative rewrite rule, we know that T4 4, also cannot be
realized as a level subgraph of Q*. d

By the Chain Inversion Lemma 3.3.5 (pp. 36) and the Alphabet Symmetry
Lemma 3.3.6 (pp. 36):

COROLLARY 3.8.10 (Obstruction 10). Saspe = SABaa = SBBab = SAr = 0.

3.8.6. Obstruction 11: The Forbidden Graph Typas. The vertices of Obstruc-
tion T,pap are named: v1¢4(vo), v2 = ¢p(v1), v3 = Pa(v2), va = ¢p(v3). The
graph T, g ap is depicted in figure 53.

We are now ready to prove the following proposition.

ProprosITION 3.8.11. The graph T,pap cannot be realized as a proper simple
chain as a level subgraph in Q) for n > 5.

Proor. To prove this, we will consider the ways in which T}, g4, might appear
as a proper simple chain in an level subgraph of Q*. There are six ways:

L1. Tt occurs as an trailing subgraph of T,,B45-
L2. Tt occurs as an trailing subgraph of Tg,p p-
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Figure 52: Rewriting T4 4p, using p to get a graph which is forbidden.
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Figure 53: The Forbidden Graph T, p4p.

L3. Tt occurs as an trailing subgraph of Ty, B Ap-
R1. It occurs as a leading subgraph of T, pApAa-
R2. It occurs as a leading subgraph of T, g Apq-
R3. It occurs as a leading subgraph of T, g .

Each of these possibilities is depicted in Figure 54.

The impossibility of each of these configurations will now be proven, in turn,
using the Obstruction Rewriting Rules 1 and 2 presented in Propositions 3.5.6 (pp.
47) and 3.7.6 (pp. 56), and by appealing to already-known forbidden graphs.

Case L1: Suppose the tree T,,p54p is realized. Now T,,545 can be rewritten
using a p transformation to yield a graph which contains the tree T} 45 as a subgraph.
But T,.p cannot be realized, because of Corollary 3.4.6 (pp. 44). Hence, ToopA4s
also cannot be realized. The argument is illustrated in Figure 55.

Case L2: The tree Tg,p4p contains the tree T, p as a proper simple subchain.
But T's,p cannot be realized, because of Corollary 3.8.6 (pp. 64). Hence, Tg,Bab
cannot be realized. The argument is illustrated in Figure 56.

Case L3: Suppose the tree Ty,pap is realized. Now Tpepap can be rewritten
using a p transformation to yield a graph which contains the tree Ty, as a subgraph.
But Tye, cannot be realized, because of Corollary 3.4.8 (pp. 46). Hence, TpoB4s
also cannot be realized. The argument is illustrated in Figure 57.
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Figure 55: Why the L1 case (Ty.B45) is forbidden.

Case R1: The tree T,pap4 contains the tree T, g, as a subgraph. But T,p,
cannot be realized, because of Corollary 3.8.6 (pp. 64). Hence, T,pap4 also cannot
be realized. The argument is illustrated in Figure 58.

Case R2: The tree T, p 4y contains the tree Tpap, as a subgraph. But T ap,
cannot be realized, because of Corollary 3.8.4 (pp. 62). Hence, T, 5 ap, also cannot
be realized. The argument is illustrated in Figure 59.
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Case R3: Suppose the tree T,papp is realized. Now T,B4p5 can be rewritten
using a p transformation to yield a graph which contains the tree T,p; as a subgraph.
But T, cannot be realized, because of Corollary 3.4.8 (pp. 46). Hence, TopAns
also cannot be realized. The argument is illustrated in Figure 60.

Figure 60: Why the R3 case (Tpopap) is forbidden.

Since each of the cases L1-L3 and R1-R3 were handled, and the corresponding
graphs shown to be forbidden, we can conclude that T, 5 45 cannot be realized as a
proper simple chain in a level subgraph of Q0 for n > 5.

Proposition 3.8.11 is proved. |

Appealing to the Chain Inversion Lemma 3.3.5 (pp. 36) and the Alphabet
Symmetry Lemma 3.3.6 (pp. 36), the following is an immediate corollary of the
previous proposition.

COROLLARY 3.8.12 (Obstruction 11). If o in F> contains aBAb, BabA, bABa
or AbaB as a proper subword, then S, contains no conjugacy classes of length > 5.

3.8.7. Obstruction 12: The Forbidden Graph T,gpq... The vertices of Obstruc-
tion TyBBea are denoted: vy = @o(v0), v2 = ¢p(v1), v3 = dB(V2), V4 = Pg(v3),
U5 = ¢@q(v4). The graph T,pap is depicted in Figure 61.

(12) T “BBan

Figure 61: The Forbidden Graph T,5B4q-

We are now ready to prove the following proposition.
PROPOSITION 3.8.13. T,BBaea cannot be realized in a level subgraph of Q*.

ProoOF. By applying a T rewrite operation and then a p rewrite operation, we
can transform T,pp,, into a graph which contains Ty, as a subgraph. But T,
is forbidden, by Corollary 3.4.6 (pp. 44). Thus, TyBBa. is also forbidden. The
argument is depicted in Figure 62. a
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Figure 62: Why T,ppBa, is forbidden.

By the Chain Inversion Lemma 3.3.5 (pp. 36) and the Alphabet Symmetry
Lemma 3.3.6 (pp. 36):

COROLLARY 3.8.14 (Obstruction 12). S;8Baq = Spaasy = Saawa = SBBaaB =
0.

3.8.8. Obstruction 18: The Forbidden Graph T,,B.. The vertices of Obstruc-

tion TyeBBa are denoted: vy = @q(v0), v2 = ¢B(v1), v3 = dB(V2), V4 = Pg(v3),
v5 = @o(vs). The graph T,pap is depicted in Figure 63.

Figure 63: The Forbidden Graph T,,BBq-

We are now ready to prove the following proposition.

PROPOSITION 3.8.15. The graph T,,BB, cannot be realized in a level subgraph
of Q*.

Proor. By applying a 7 rewrite operation and then a p rewrite operation, we
can transform T,,pp, into a graph which contains T, as a subgraph. But Ty
is forbidden, by Corollary 3.4.8 (pp. 46). Thus, ThuBB, is also forbidden. The
argument is depicted in Figure 64. d

By the Chain Inversion Lemma 3.3.5 (pp. 36) and the Alphabet Symmetry
Lemma 3.3.6 (pp. 36):
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Figure 64: Why T,,BB, is forbidden.

COROLLARY 3.8.16 (Obstruction 13). SpaBBa = SthAads = Sasbas = SBaaBB =

3.9. Bounding the Size of Level Neighborhoods. In this section we put
together all the information concerning small and large scale obstructions, and use
this to control the structure of level neighborhoods in Q*.

The next theorem shows that is a sufficiently long conjugacy class w, if w is a o-
chain for a sufficiently long ¢, then ¢ must be of the form z* for some z € XUX L.

THEOREM 3.9.1 (Length 5 Chains Theorem). Suppose w € F, has length > 5
and w is a o-chain for some word o € Fy where |o| = 5. Then o must be either
aaaaa, bbbbb, AAAAA or BBBBB.

PROOF. Let o be the initial prefix of o, with |og| = 4. We start by the
determining possible values of o¢. To do this, let us enumerate all possible o¢ € F3
where |og| = 4. If w € F, is a o-chain, then w is certainly also a og-chain. The
table below summarizes the possible and forbidden values for oy, and provides
documentary evidence (Corollary number and page on which it was proved) to
substantiate why particular values for o is disallowed.

Note: The values of g are organized into 4 tables, based on the first letter of
09. Within each table, the values of g are organized based on the 3-letter “base”
prefix of gg.
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len. 3 00 Forbidden by 00 Forbidden by o) Forbidden by
base Corollary # Corollary # Corollary #
aaa aaaa | POSSIBLE aaab | 3.4.6, p.44 aaaB | 3.4.2, p.41
aab aaba | 3.4.6, p.44 aabb | 3.4.6, p.44 aabA | 3.4.6, p.44
aaB aaBa | 3.8.6, p.64 aaBA | 3.8.8, p.64 aaBB | POSSIBLE
aba abaa | 3.6.4, p.b3 abab | 3.6.4, p.b3 abaB | 3.6.4, p.53
abb abba | 3.4.8, p.46 abbb 3.4.8, p.46 abbA | 3.4.8, p.46
abA abAb | 3.8.6, p.64 abAA | 3.8.8, p.64 abAB | 3.8.2, p.59
aBa aBaa | 3.8.6, p.64 aBab | 3.8.6, p.64 aBaB | 3.8.6, p.64
aBA || aBAb | 3812, p69 || aBAA | 3.4.6, p.44 aBAB | 3.6.4, p.53
aBB || aBBa | POSSIBLE || aBBA | 3.4.8, p.46 aBBB | 3.4.2, p.4l
baa baaa | 3.4.8, p.46 baab | 3.4.8, p.46 baaB | 3.4.8, p.46
bab baba | 3.6.4, p.53 babA | 3.6.4, p.53 babb 3.6.4, p.b3
baB baBa | 3.8.6, p.64 baBA | 3.8.2, p.59 baBB | 3.8.8, p.64
bba bbaa | 3.4.6, p.44 bbab | 3.4.6, p.44 bbaB | 3.4.6, p.44
bbb bbba | 3.4.6, p.44 bbbA | 3.4.2, p.41 bbbb | POSSIBLE
bbA bbAA | POSSIBLE bbAb | 3.8.6, p.64 bbAB | 3.8.8, p.64
bAb bAba | 3.8.6, p.64 bAbA | 3.8.6, p.64 bAbb | 3.8.6, p.64
bAA || bAAA | 3.4.2, pal bAAb | POSSIBLE || bAAB | 3.4.8, p.46
bAB | bABa | 3.8.12,p.69 || bABA | 3.6.4, p.53 bABB | 3.4.6, p.44
Aba Abaa | 3.4.8, p.46 Abab | 3.6.4, p.53 AbaB | 3.8.12, p.69
Abb Abba | 3.4.6, p.44 AbbA | POSSIBLE Abbb | 3.4.2, p41
AbA || AbAA | 3.8.6, p.64 AbAb | 3.8.6, p.64 AbAB | 3.8.6, p.64
AAb || AAba | 3.8.10, p.65 AAbA | 3.8.6, p.64 AAbb | POSSIBLE
AAA | AAAA | POSSIBLE || AAAb | 3.4.4, p.43 AAAB | 3.4.8, p.46
AAB || AABa | 3.4.8, p.46 AABA | 3.4.8, p.46 AABB | 3.4.8, p.46
ABa ABaa | 3.8.10, p.65 ABab | 3.8.4, p.62 ABaB | 3.8.6, p.64
ABA || ABAA | 3.64, p.53 ABAb | 3.6.4, p.53 ABAB | 3.6.4, p.53
ABB || ABBa | 3.4.6, p.44 ABBA | 3.4.6, p.44 ABBB | 3.4.6, p.44
Baa Baaa | 3.4.4, p.43 Baab | 3.4.6, p.44 BaaB | POSSIBLE
Bab Baba | 3.6.4, p.53 BabA | 3.8.12, p.69 Babb | 3.4.8, p.46
BaB BaBa | 3.8.6, p.64 BaBA | 3.8.6, p.64 BaBB | 3.8.6, p.64
Bab Baba | 3.6.4, p.53 BabA | 3.8.12, p.69 Babb | 3.4.8, p.46
BAA || BAAA | 3.4.6, p.44 BAAb | 3.4.6, p.44 BAAB | 3.4.6, p.44
BAB || BABa | 3.6.4, p.53 BABA | 3.6.4, p.53 BABB | 3.6.4, p.b3
BBa BBaa | POSSIBLE || BBab | 3.8.10, p.65 BBaB | 3.8.6, p.64
BBA || BBAA | 3.4.8, p.46 BBAb | 3.4.8, p.46 BBAB | 3.4.8, p.46
BBB || BBBa | 3.4.4, p.43 BBBA | 3.4.8, p.46 BBBB | POSSIBLE

By examining the tables on the previous two pages,

must be one of the following:

one may verify that og

{aaaa, bbbb, AAAA, BBBB,aaBB,bbAA,
AAbb, BBaa,aBBa,bAAb, AbbA, BaaB}

Now we extend each of the above possible choices for gg by one symbol to
obtain possible choices for o. Again, many of the possible choices are disallowed
because they result in the presence of chains that we have already proved are not
realized. The table below summarizes the possible choices that are allowed and
forbidden for o, and documents the evidence (Corollary number and page on which
it was proved) to substantiate why particular values for ¢ are disallowed.
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| oo base | o Forbidden by
aaaaa POSSIBLE
aaaa — aaaab Cor. 3.4.6, p.44
aaaaB Cor. 3.4.2, p.41
bbbba Cor. 3.4.6, p.44
bbbb — bbbb A Cor. 3.4.2, p.41
bbbbb POSSIBLE
AAAAA POSSIBLE
AAAA — AAAAb Cor. 3.4.4, p.43

AAAAB Cor. 3.4.8, p.46
BBBBa Cor. 3.4.4, p.43
BBBB — BBBBA Cor. 3.4.8, p.46
BBBBB POSSIBLE

aaBBa Cor. 3.8.16, p.71
aaBB — aaBBA Cor. 3.4.8, p.46
aaBBB Cor. 3.4.2, p.41
AAbba Cor. 3.4.6, p.44
AAbb — AAbLA Cor. 3.8.14, p.70
AAbbb Cor. 3.4.4, p.43
BBaaa Cor. 3.4.4, p.43
BBaa — BBaab Cor. 3.4.6, p.44
BBaaB Cor. 3.8.14, p.70
aBBaa Cor. 3.8.14, p.70
aBBa — aBBab Cor. 3.8.10, p.65
aBBaB Cor. 3.8.6, p.64
bAAba Cor. 3.8.10, p.65
bAAb — bAAbA Cor. 3.8.6, p.64
bAAbb Cor. 3.8.14, p.70
AbbAA Cor. 3.8.16, p.71
AbbA — AbbAb Cor. 3.8.6, p.64
AbbAB Cor. 3.8.8, p.64
BaaBa Cor. 3.8.6, p.64

BaaB — BaaBA Cor. 3.8.8, p.64
BaaBB Cor. 3.8.16, p.71

Examination of the previous tables shows that ¢ must be one of the following
either aaaaa, or bbbbb, or AAAAA, or BBBBB. This completes the proof of the
theorem. |

THEOREM 3.9.2 (Level Structure Theorem). For any u in Fy, if |u| > 10 and
| B* (u)| > 4373, then B*(u) is an z*-chain having at most |u| — 5 vertices.

PROOF. Denote the graph B*(u) as G. If G is an z*-chain then the theorem
follows immediately from Part (II) of Theorem 3.2.4 (pp. 31).

It remains to consider the case when G is not an z*-chain. Every vertex in G
has degree at most 4. It follows that the ball of radius 7 around a vertex contains
at most 1 + 4 + 12 4+ 36 + 108 + 324 + 972 + 2916 = 4373 distinct vertices. This
means that a graph G with 4374 or more vertices is not contained in the ball of
radius 7 about any vertex. Hence there must be two vertices u, v in G for which
the shortest path between them in G has length > 8. Let us take u and v to be
the vertices that are farthest apart in G, and denote the path between them as p.
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Then the presence of p tells us that u is a o-chain for some o of length |p| > 8 > 5.

By Theorem 3.9.1 (pp. 71), u is an :Ul)pl—chain for some zg € X*.

Let p be the maximal length zo-chain in G which contains p as a subchain.
Note that p is uniquely defined. Let @, ¥ be the start and end vertices of p.

Suppose that there is a vertex w that is not on the path p. Since G is connected,
there is a shortest path ¢ connecting w to p. Suppose that ¢ hits p at vertex z. We
divide p into two parts: pz connects z to u by going along an initial segment of p,
and py connects z to v by going along a final segment of p.

We connect w with 4 via a path py,s = ¢- Pz. We connect w with ¥ via a
path pys = ¢- Ps. Then either py z or p,,; must have length > 1+ (|p|/2) > 5.
If |pw,al = 5, then by Theorem 3.9.1 (pp. 71) it follows that the labels on ¢ are
the same as the labels on pz. But then w lies on p, a contradiction. Likewise, if
|Pw,5| = 5, it follows that the labels on ¢ are the same as the labels on gz. But then
w lies on P, a contradiction. Thus, we conclude that there is no vertex w that is
not on the path p.

It follows that G is a chain graph labelled by z¢, and that @ is a x§-chain for
some g € X* and k € N.

Part (IT) of Theorem 3.2.4 (pp. 31) states that if |u| > 10 and u is an x*-chain
then k is at most |u| — 5. This completes the proof of the theorem. |

3.9.1. Pulling Back to Q2 and T.

DEFINITION 3.9.3. A graph G is called o dense width w cylinder of length &
if it can be obtained by taking k disjoint complete graphs H,...,Hy, where each
H; is a complete graph on w vertices (i = 1,...,k), and connecting each vertex u
in H; to every vertex v in Hiyq (i=1,...,k—1). A graph G is called a width w
cylinder of length k if it is a subgraph of a dense width w cylinder of length k.

Main Theorem (Theorem 1.4.1) For any u in Fy, if |u| > 10 and |B(u)| >
34984, then B(u) is width 8 cylinder of length at most |u| — 5 and has at most
8|u| — 40 vertices.

PrOOF. For any u in Fy, |B(u)| < 8B*(u)|, since ~p identifies at most 8
conjugacy classes to a single vertex in Q*. If |B(u)| > 34984 then |B*(u)| > 4373
and by Theorem 3.9.2 (pp. 73) B*(u) is an z*-chain having at most |u| — 5 vertices.
But then B(u) is width 8 cylinder of length at most |u| — 5, and so has at most
8|u| — 40 vertices. O

The previous theorem can now be leveraged to give us information about White-
head’s graph T".

THEOREM 3.9.4 (Level Neighborhoods in T'). For any cyclically reduced word
u in Fa, if lu| > 4378 then the connected level component of u in T' has no more
than 8|u|®> — 40|u| vertices.

PROOF. Suppose, towards contradiction, that the connected level component
of u in T has more than 8|u|? — 40|u| vertices. Since |u| > 4378, it follows that
8|u|? —40|u| exceeds 34984|u|. So the connected level component of 4 in T has more
than 34984|u| vertices. But the map from I' — Q collapses at most |u| vertices of
T to a single conjugacy class in Q, so it follows that the size of B(&) in Q exceeds
34984. By Theorem 3.9.1 then B(@) is width 8 cylinder of length at most |u| — 5
and has at most 8|u| — 40 vertices. Consider the pre-image of B(@) in T, restricted
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to vertices of length |u|. This subgraph of I' is again just the connected level
component of w in I'. Since the map from I' — Q collapses at most |u| vertices of
I to a single conjugacy class in 2, the connected level component of u in T' must
have at most 8|u|? — 40|u| vertices. This is a contradiction. O

4. Algorithmic Applications

In this section we explore the algorithmic applications of the the previously
derived mathematical results. We begin with an overview of known algorithms for
CONJ,, and AUT-CONJ,,.

4.1. Algorithms for (Standard) Conjugacy. Recalling Definition 1.0.2
(pp.- 2) where the decision problem CONJ,(u,v) was first introduced. This in-
volves taking as input an arbitrary pair u,v € F,, and determining if Jw € F,
s.t. wluw = v. The result that CONJ,, is decidable is, by now, folklore. The
algorithm attributed to Greendlinger is as follows.

ALGORITHM Acons: Given u,v in a free group F = F(X), |X| = n:

1. Construct two cycle graphs O, and O, having lengths |u| and |v| re-
spectively. Write u clockwise on the edges of the first, and v along the
second—these labelled graphs are called “circular words”.

2. Now perform cyclic free reduction on these circular words, i.e. repeatedly
contract all pairs of consecutive edges with labels z,27! or z,z~! (for
z € X).

3. Upon termination of cyclic free reduction, check to see if the two circles
graphs are equal graphs, as drawn.

e If so, output 1. Halt.

e Otherwise, output 0. Halt.
The next proposition shows that the above algorithm is correct:
PROPOSITION 4.1.1. (Folklore) Acong is a correct algorithm for CONJ,,(u,v).

4.1.1. Computational Complexity. Let us consider the time complexity of the
algorithm Aconyg for standard conjugacy that was described in the previous sec-
tion:

1. The construction of the cycle graphs can be done in time O(|u|logn +
|v|logn).

2. This reduction process terminates since the original words are of finite
length, and their length strictly decreases at each reduction step. Cyclic
free reduction u ~» @ and v ~ ¥ can be achieved in time O(|u|logn +
|v|logn).

3. To check to see if & and ¥ are equal as graphs first check that |a| = |9|.
If so, then fix a starting vertex p on Oz and vary the start vertex g on
Ojz. Determine if the word read clockwise in Oy starting from p is the
same as the word read clockwise in Oy from ¢. This can be done in time
O(]a||9| logn). Since |4| < |u] and |8] < |v| and |@| = |9] it follows that
|&t] and |§| are both less than min(|ul|,|v|). So this stage of the algorithm
works in time O(min(|u|?, |v|?)logn).

The above analysis yields:

THEOREM 4.1.2. Acong decides CONJ,, in time O(min(|u|?, |v|?)logn) time.

COROLLARY 4.1.3. Acony decides CONJ; in time O(min(|u|?,|v|?)) time.
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4.2. Algorithms for Automorphic Conjugacy. In the previous section,
we considered algorithms for (standard) conjugacy. In contrast, here we consider
AUT-CONJ,(u,v), the decision problem for automorphic conjugacy that was
introduced in Definition 1.0.1 (pp. 2). In this problem, we are given u,v € F;, and
are to detemine if there is an automorphism ¢ in Aut(F;,) for which ¢(u) = v.

4.2.1. Whitehead’s Algorithm. In 1936, J. H. C. Whitehead proved [27, 28]
that AUT-CONJ,, is decidable. We describe the algorithm below following the
illustration in Figure 65.

/Y

|
e

elements of increasing length

R4

Figure 65: The operation of Whitehead’s Algorithm.

ALGORITHM A syr—cons: Given u,v in a free group F = F(X), | X| =n:

1. Compute & and ¥ and represent them as cyclic words.

2. Apply Whitehead automorphisms greedily to reduce the lengths of 4 and
¥ until no further reduction in length is possible. Denote the minimal
length forms as 4 and .

3. Check if |a| = |7
3A. If not, output 0. Halt.
3B. Otherwise, let n = |@| = |0]. Determine if 4,7 are in the same

connected component, of T', as follows.
3B-1. Construct via breadth-first search 'y, the connected compo-
nent of I' which contains » in which all vertices have length
|al.
3B-2. Test whether v is in I';.
e If so, output 1. Halt.
e Otherwise, output 0. Halt.
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The proof that Whitehead’s Algorithm is correct is fairly lengthy and involved.
For details, the reader is referred to the original papers of Whitehead [27, 28]m
the classical texts of Magnus, Karrass and Solitar [14] and Lyndon and Schupp
[13]. Another approach for correctness is show that the Whitehead automorphisms
form a confluent rewriting system for automorphically conjugate elements of a free
group, and then to appeal to the Diamond Property.

Here we will only address the time complexity of the original Whitehead’s
Algorithm. We will briefly consider improvements in Whitehead’s Algorithm due
Miasnikov and Shpilrain, and explore new improvements based on the mathematical
results of previous sections.

4.2.2. Computational Complexity. Let us consider the time complexity of the
algorithm A syr_cony for automorphic conjugacy that was described in the pre-
vious section:

1. The task of computing the cyclically reduced forms of u and v (i.e. @ and
¥ respectively) and representing them as cyclic words can be done in time
O(Ju|logn + |v|logn).

2. There are |W,,| = 2™ Whitehead automorphisms to consider when greedily
reducing the lengths of @ and ¥ to find minimal length representatives u
and ©v. Consider the process applied to u: Then, each application of a
Whitehead automorphism takes time O(|u|logn). Each application of a
Whitehead automorphism is amortized against a non-trivial reduction in
the length of u. It follows at most |u| reductions can take place, and hence
that it takes at most O(2"|u|?logn) time to compute @. Thus, this step
of the procedure takes at most O(2"|u|? logn + 2"|v|? logn) time.

3. We construct via breadth-first search from u, the connected subgraph
of the Whitehead graph induced by the vertices of the same length as
|@|. The edge density in this component is O(2™), since every vertex has
at most |W,| = O(2") edges incident to it. If one can obtain a bound
f(m) on the size of the biggest level connected component in T',,, then
(since |a| < |u| and |8] < |v|) the running time of this step will become
O(2"™ f(min |ul, |v])). In the classical analysis, elementary combinatorics
tells us that f(m) = O(n™) since this bounds the number of elements in
F,, having length equal to m. Using different techniques, Miasnikov and
Shpilrain determined a bounding function f(m) = m* for the case when
n = 2. Now, it follows from our result Theorem 3.9.4 (pp. 74) that in the
case of n = 2, one actually has a quadratic bounding function on the size
of the biggest level connected component at level m in I'. Thus, in the
rank 2 case, this stage requires only O(min(|u|?,|v[?)) time.

While the classical analysis yields:
THEOREM 4.2.1. A syr—_cong decides AUT-CONJ,, in time O(2”nmi“(|"‘*‘”|)).

for the case of F, we have shown:

COROLLARY 4.2.2. Aayr—cony decides AUT-CONJ; in time O(min(|ul?, |v|?)).

Computational experiments by C. Sims and A. D. Miasnikov have long indi-
cated that in practice, however, Whitehead’s Algorithm runs in polynomial time.
Until recently there was no formal analytic argument to explain this empirical fact.
Then, in 1999 (to appear) Miasnikov and Shpilrain [17] obtained a polynomial
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bound for the running time of Whitehead’s Algorithm in the case of F5, and they
hypothesized that Whitehead’s Algorithm is polynomial for free groups of all ranks.
Here, we have shown that A ayr_cons decides AUT-CONJ; in the same time
complexity as Acons decides CONJ,, namely in quadratic time (see Corollary
4.1.3 pp. 75). Since any algorithm for AUT-CONJ,; is also an algorithm for
CONJy, it is improbable that we will be able to find a faster algorithm to test
automorphic conjugacy in Fj.

We remark that the structural description of the orbits of F; under the action of
Awut(F») makes it possible to devise algorithms which operate altogether differently
from and surpass Whitehead’s algorithm. This will be the subject of a separate
publication.

5. Computational Tools

5.1. JIGGLE. The 1999 dissertation, “A Numerical Optimization Approach
to General Graph Drawing” of Daniel Tunkelang (Carnegie Mellon University) [26]
provides an excellent overview of graph drawing, an explanation and implementa-
tion of new methods to solve the general graph drawing problem. This implemen-
tation was extended by the author (as described later) to generate a visualization
of the structure of Aut(F2).

Whereas most prior research considered only special types of graphs, Tunke-
lang’s methods address the general graph drawing problem. In addition to its
generality, the approach presented in the dissertation improved on several aspects
of graph drawing, including an improvement in performance over prior algorithms
and an improvement in the quality of the resulting drawings. Tunkelang considers
three basic aspects of graph drawing: drawing conventions, constraints, and aes-
thetics. Drawing conventions are basic specifications such as what space is being
used for the drawing area (usually the plane R?) or what type of lines are being
used between vertices.

JIGGLE constructs a physical model of a graph by considering vertices as mas-
sive positively charged spheres and reifying edge relationships as physical springs.
The evolution of the system is then simulated under the influence of Hooke’s Law,
Coulomb’s Law and Newton’s Law (as well as other variants, See Figure 66). Tunke-
lang’s principal contribution involves novel techniques for computing efficient ap-
proximations of the simulation, without which the approach would be computa-
tionally infeasible for all but the smallest graphs.

To avoid local minima in the energy surface, Tunkelang starts off by placing the
vertices in a high-dimensional space, and the dimensions are gradually “squashed
out”, by applying gravity laterally along successive dimensions. Once the layout be-
comes ¢ thin in dimension k, the simulation projects its state into k¥ — 1 dimensional
FEucliean space, and proceeds to apply gravity along dimension £ — 1. The process
continues in this manner until a 2D layout is attained. The reader is referred to
[25] for further details.

5.2. Extended Implementation for Aut(F2). Much of the intuition behind
this mathematical research was derived by playing with JIGGLE. The author has
developed a set of tools for exploring the structure of Aut(F') and other combinato-
rial objects related to free groups. This software is structured in three “modules”:
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Hooke's Law
edge contraction

Coulomb’s Law
vertex repulsion

— =

Newton's Law
dimensional squashing

%

massive body

Figure 66: The three forces which act during JIGGLE graph layout.

e Combinatorial “back end”, responsible for enumerating connected com-
ponents and level neighborhoods in T", 2 and Q*.

e Visualization “front end”, responsible for manipulating JIGGLE parame-
ters and displaying the resulting drawings.

e Statistical “analyzer”, responsible for detecting statistical patterns in terms
of subgraph frequencies, symmetries and structure. This module operates
both on the combinatorial graphs and on their drawings.

The role of this software as part of the mathematical laboratory cannot be over-
emphasized. The visualization front end was used to firstexamine long z* chains
and surrounding structures. The statistical analyzer was used to determine candi-
dates for forbidden subgraphs (and to search for occurrences of counterexamples to
hypothesized forbidden graphs).
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And while these tools did not provide much information about how to prove
the results of the previous sections, they served as a computational laboratory in
which to make systematic observations and experiment upon the naturally occur-
ring objects of interest: ', 2 and Q*. More details of this software will be made
available in a separate publication.

6. Conclusions and Future Work

This work considered the structure of Whitehead’s Graph T, introduced in 1936
by J. H. C. Whitehead as away to quantify relationships between the natural length
function | | of F», and the action of Aut(F3) on Fs.

Specifically, we provided a structural description of the level sections in T', by
studying two natural quotients, 2 and 2*. These quotients required us to shift from
the study of F; to the study of conjugacy classes in F5. To facilitate the investi-
gation, we introduced the notion of combinatorial equations on conjugacy classes.
We provided techniques for mapping hypothesized subgraphs of Q into systems
of combinatorial equations—this mapping process produced systems of constraints
with property that the infeasibility of the constraints implies non-occurrence of the
subgraphs. By proving that there is a set of such forbidden subgraphs (and enlarg-
ing this set using rewriting rules) we were able to show that all sufficiently large
level sections in (2* must be chains. Finally, we applied these results to improve the
analysis of the classical Whitehead’s Algorithm, showing that it tests automorphic
conjugacy in F> in at most quadratic-time.

Below we list some questions that are presently under investigation, and are
natural extensions of this work:

(1) Find non-trivial lower bounds on the size of level neighborhoods
for the automorphism graph of F,, n > 2

(2) Is there a finite set of “obstruction” for level neighborhoods of
the automorphism graph of F,, n > 3

(3) Is there a recursive procedure to find “obstructions” for level
neighborhoods of the automorphism graph of F,,, n >3 ?

(4) Is there a recursive procedure to transform an “obstruction”
graph into a system of combinatorial equations?

(5) Is there a recursive procedure to determine if a system of com-
binatorial equations has a solution? Describe the solution sets
of such combinatorial equations.
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