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Abstract

We propose two methods for aggregation of peer group topology in hierarchical ATM net-
works. In our proposed schemes, aggregation is performed in two steps: First, we transform
the original peer group topology into a complete graph on border nodes. Then, we compute
a compact representation of this complete graph. The final representations generated are
terse, yet preserve the critical information of peer group structure that is needed for efficient
call setup and routing. The first scheme is compatible with the current PNNI, while the
second scheme extends the interpretation of these standards.

Both proposed aggregation methods transform a given peer group into a star graph rep-
resentation. Our first approach optimally preserves, in a least square sense, the original costs
of routing through the peer group. Our second approach assigns a weighted vector to the
nucleus of the Logical Group Node, which quantifies the error in the compact representation.
The two schemes are dual, in the sense that the first is best suited for peergroups where traffic
patterns are unpredictable, and the second is suited for peergroups where traffic patterns can
be characterized. Both the proposed schemes are practical: For peer groups with nodes V,
links F, and n border nodes B C V, the approaches run in O(n|V|log |V |+ n|E| + poly(n))
time. The size of the final representation is small (linear in the number of border nodes)
and can be computed efficiently. The scalability of the proposed algorithms makes them
well-suited for use in practice. We also present a general method for measuring the de-
gree of confidence in an aggregation scheme and give examples that illustrates the proposed
techniques.

1 Introduction

As the advantages of ATM technologies are recognized, we anticipate the size of operational ATM
clouds to grow at a rapid pace. In order to insure scalable operation of these networks, the PNNI
standards for routing have been recently adopted. PNNI defines a set of protocols for a hierarchic
network that provide the basis for efficient routing.

*Permanent address: The Catholic University of America. Department of Mathematics, Washington D.C. 20064.
This work was funded by CIPS Corp., Bethesda, MD, under a subcontract from Kaman Sciences Corporation.
tKaman Sciences Corp. At NRL



The PNNI hierarchy begins at the lowest level, where switches are clustered into peer groups.
The members of a peer group execute a protocol to synchronize their topology databases in
order to maintain concordant views of the group. As part of this protocol, each peer group
elects a node that is responsible for aggregating and distributing information about the group,
to higher levels of the PNNI hierarchy. Such a node is referred to as the peer group leader. A
peer group at a higher level of hierarchy is a collection of logical group nodes (LGNs), each of
which represents a lower level (or child) peer group. The function of a logical group node and
the peer group leader of its child peer group are closely related: The peer group leader forwards
reachability information and aggregated topology information about its group to the logical group
node. Reachability information is a summary of (lowest level) ATM addresses that can be reached
within that peer group. Aggregated topology, refers to a summary of peer group structure from
which characteristics (such as bandwidth availability, transmission delay, etc. ) for routes into and
across the peer group can be estimated.

The PNNI hierarchy is defined recursively by this process of clustering nodes into peer groups
and then representing each cluster by a logical group node at the next higher level. There can be
up to 104 levels in the hierarchy. A higher level group uses the aggregated information advertised
by its constituent lower level groups to decide which ones to route a connection through. Feeding
information up the PNNI hierarchy is necessary for the creation of the hierarchy itself and for
distributing routing information about child peer groups. Conversely, feeding information down
the hierarchy is also essential to allow nodes in the lower level peer groups to route to all reachable
destinations. The critical interface in this two-way flow of information is the one between a
logical group node and the peer group leader of its child peer group. Because PNNI permits
aggregation to take place during the upward flow of information across this interface, the protocol
provides a natural mechanism for reducing the communication overhead involved in maintaining
network routing information. In addition, aggregation permits the lower level domains to hide
sensitive details about their internal structure, as mandated by security requirements in todays
networks. The long term success of ATM as an end-to-end solution for networking depends largely
on the success of PNNI. The success of PNNI, in turn, depends on how well peer group topology
information can be summarized by aggregation schemes before it is reported to distant regions in
the network.

As one degenerate case we might opt for no aggregation i.e. every peer group leader forwards
the full information about the peer group to its logical group node. In this case, every node in the
network will be maintaining a database that describes the entire network. Such a scheme would
guarantee optimal route selection, but would result in prohibitively large amounts of network
traffic, just to maintain accurate topology databases. Even if the resulting background traffic was
not objectionable, its volume would clearly grow quadratically in the size of the network, yielding
a non-scalable solution.

In the other extreme case, we might opt for total aggregation i.e. every peer group leader
forwards nothing to the logical node. This scenario is equivalent to one where every node remains
up-to-date about only switches and links in its own peer group. Such a scheme has an advantage
that it produces minimal traffic due to PNNI database synchronizations. However switches, not
having any knowledge of the larger network structure, would make uninformed, greedy routing
decisions. This would result in the allocation of excessively long routes i.e. bigger call setup times,
crankbacks and suboptimal network call admission rates, etc.



In this paper we probe the space of solutions between these two trivial aggregation schemes.
The topology information we seek to aggregate includes the graph representation of a peer group
and associated quantities or topology state parameters.

Topology state parameter refers to a quantity that describes individual nodes or links in a
peer group. Topology state parameters fall into two classes: the metrics and the attributes. The
metrics are those topology state parameters that require the values of the parameter for all links
and nodes along a given path to be combined in order to determine whether the path is acceptable
for carrying a given connection (e.g. link delay). Attributes are those topology state parameters
that are considered individually to determine whether a specific (single) link or node is acceptable
for carrying a given connection (e.g. available bandwidth).

Some topology parameters required by PNNI are: cell loss ratio, maximum cell rate, available
cell rate, and administrative weight, Additionally, cell delay variation for CBR and real-time VBR,
service categories, and maximum cell transfer delay for CBR, real-time VBR and non real-time
VBR service categories.

2 Topology Aggregation

A desirable aggregation scheme must

1. Transform a peer group structure into a compact form. This is necessary to capitalize
on the intended purpose of aggregation, namely to reduce background traffic required to
maintain routing information for large networks.

2. Retain information about those aspects of the topology that are most critical to
making good routing decisions. The aggregation process results in each switch seeing a
suitably coarsened (and hopefully adequate) view of the entire network topology: A switch
sees the true topology only for its own peer group, but has progressively more aggregated
views of farther regions of the network. Since this aggregated topology information will be
used to select the routes for connection requests, we must make sure that our aggregation
scheme does not have too detrimental effect on route optimality.

3. Be efficiently computable. Aggregation will need to be re-performed every time peer
group topology changes significantly. Having a lightweight aggregation algorithm ensures
that we can have a reasonable criterion defining a “significant change”, without putting an
unacceptable burden on the network switches that have to compute the aggregated repre-
sentation.

There are two paradigms for topology aggregation currently supported in PNNI: the Symmetric-
node approach and the Star approach. In a Symmetric-node model the peer group topology is
collapsed to a single node, and one value (usually the worst-case value), called the radius, is adver-
tised for each parameter. While this scheme greatly reduces the information propagated, it may
result in very poor routing decisions, particularly if the number of border nodes and the variance
in their connectivity is large. The Star model augments the Symmetric-node approach as follows:
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topology is aggregated into a representation with one central virtual node called the nucleus and
n border nodes. This central node is explicitly connected to all of the border nodes via spokes. The
spokes may be given weights different from the radius, in which case they are referred to as excep-
tions. In the final level of sophistication, PNNI aggregation allows the aggregated representation
to specify logical links directly between borders; such links are called bypasses.

To date, no specific Symmetric-node or Star aggregation schemes have been defined in the
PNNI standard. In this paper, we present two approaches for topology aggregation with respect
to a single metric parameter. Specifically, we describe two techniques for computing good Star
representations of a peer group.

3 Mathematical Model

We represent a peer group as a multi-weighted undirected graph G(V, E, B, Py, - - -, P) with nodes
V', edges E, where B C V is the fixed set of n border nodes, and Py, -- -, P are the required PNNI
topology state parameters. The edge vector e;; = (P, P, .- P") consists of the values of the
parameters for the link joining V; and V.

3.1 Preliminaries

Let 6p, (W, B;) be the value of the best path between the non-border node W and border node B;
with respect to P;. Specifically,

e for additive metric: best path means the shortest path.

e for bandwidth: best path means the path with maximum available bandwidth. The band-
width available on a path is the minimum of the bandwidth available on the edges that form
the path.

e for cell-loss ratio: best path means a path with minimum value for the cell loss parameter.
(Cell loss ratio along a path is approximated as the maximum value of the cell loss ratio
along the edges that form the path?).

Define bd(B;, B;), the boolean distance between a pair of border nodes B; and Bj;

(b, if Bz :Bj

bd(Bs, Bj) = { { w | w is non-border node on a simple path between B; and B,}, if B; # B;

Note: The boolean distance between two nodes is a set. It is easy to see that the boolean distance
is a metric, defined in terms of equality, containment and union of sets.

Define w, the set of candidate nodes as

I This is a valid approximation only under the assumption that the average length of a path is much smaller
than the reciprocal of the cell loss ratio (in present networks cell loss ratios are on the order of 10~9).



w={W | WeV-B, W¢ |J bd(Bi,B;)}

1<i<j<n

It is clear from this definition, that w consists of all non-border nodes in the peer group that lie
on a simple path between some pair of border nodes.

We define the status of every candidate node W € w with respect to the parameter P;, and
denote this quantity as Sp (W). We also define the status of the peer group with respect to
parameter P;, and denote this quantity by r;. The precise definitions of r; and Sp, (W) depend on
the particular parameter P;, and are given below:

P; is an additive metric: Sp, (W) = YXpg.cpdp(W,B;)  r; =minye, Sp,(W)
P; is bandwidth: Sp (W) = ming,cpdp, (W, B;) 1 = maxye, Sp, (W)
P, is cell-loss ratio: Sp (W) = maxp,cpdp, (W, B;) r; = minye, Sp,(W)

The central status nodes of the peer group relative to the pair (B, P;) are defined to be the set
of nodes W € w such that Sp, (W) = r;. A central status node may be thought of as a node on
which one can center the smallest radius sphere (with respect to parameter P;), and still capture
all of the border vertices.

4 Algorithms

4.1 Preprocessing

Whenever we need to aggregate, we first generate a weighted complete graph on border nodes
from the original peer group. We present two methods for generating the weights d;; (between
borders B; and B;) on the edges of this complete graph:

(I) d,; is the measure of the shortest path between B; and B,.

Complexity. We compute the best paths from every border node, to every other node in
the network, by running Dijkstra’s algorithm n times, starting once from each of the border
nodes. This requires O(n|V|log|V|+ n|E|) steps. The space needed is O(|V| + |E|), which
is what is required to hold the adjacency list graph representation of the peer group.

(IT) d,; is the measure of the best path between B; and B, through a central status node.

Complexity. First, we run Dijkstra’s algorithm from all border nodes, in O(n|V|log|V| +
n|E|) steps, as in (I). This gives us the dp (W, B;). Then for each non-border node W,
we use the computed distances to the border nodes to compute Sp, (W), requiring O(n|V])
additional steps. We select a central status node appropriately, by keeping track of the
best value of the Sp, (W) as we compute them. Finally, since we have already computed
the distances from the border nodes to the chosen central status node, we can compute the
pairwise shortest distances between all border nodes in an additional O(n?) steps. The space
requirement is the same as for method (I) above.
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If d;; is the weight on the edge joining B; and B; in the complete graph then this is the value
that we wish to advertise in the parent group as the cost of traversing the peer group between
border nodes B; and B;.

X6

Original peer group Complete graph on borders star representation

Figure 1: Basic steps for topology aggregation

4.2 Approach 1

We would like to represent the original peer group as a star graph with weights z; advertised on
the edges such that z; + x; = d;; for all 4, (i # 7).

In general, with n border nodes, such system of equations can be represented as AX = D
where, A is (g) X m matrix, D is (’2‘) x 1 column vector of the costs to be advertised, and X isn x 1
column vector of unknown weights to be determined for the star representation of the Logical
Group Node.

This system AX = D is an over determined system of equations which is usually an inconsistent
system. That is, given an m X n system AX = D with m > n, we cannot in general find a vector
x € R™ for which AX = D.

In such cases, one resorts to finding a vector, £ € R™ for which Az = D is closest to D in the
least square solution to the system AX = D. Indeed, & in R" is such that||r(&)||> = ||D — Az|”
is minimum over all z € R"™. Thus to solve AX = D, we solve

ATAX = ATD

The above represents an n X n system of linear equations, referred to as the normal equations.
The z obtained are the values advertised as ezception spoke edges of the star graph that represents
the peer group in the next higher level. The size of this aggregated representation, and hence the
communication incurred per peer group, is O(n).

This approach is well-suited for peer groups which experience unpredictable traffic patterns,
since it computes the star representation that minimizes, in a least squares sense, the average
distortion over all transits of the peer group.



4.2.1 Computational Complexity of Approach 1

We compute (A7 A)"' AT only once (off-line) beforehand in O(n*) steps?®.

Each time we need to re-aggregate: we multiply the precomputed (AT A) 'AT matrix by the
current value of the vector D. This multiplication can be done in O(n?®) time. The space required
to hold the precomputed value of (A7 A)~* AT and to perform the necessary multiplication is O(n?).

Thus the time requirement to perform an aggregation using Approach 1 (including preprocess-
ing) is O(n|V|log|V| + n|E| + n?), and the space requirement is O(|V'| + |E| + n?).

4.3 Approach 2

A transit is an undirected path through the peer group whose endpoints are distinct border nodes.
We call an unordered pair of border nodes (B;, B;) critical if we cannot tolerate any discrepancy
between the information advertised in the aggregated representation, and the true value d;; of the
parameter for the transit between B; and B;. Note: In the entire discussion that follows, we
deal with unordered pairs, implying that the element denoted (B;, B;) is equivalent to the element
denoted (Bj, B;).

Select a set of preserved transits P = {(i,j) | (B;, Bj) is critical}. Our approach requires
|P*| < n; the precise conditions on this set P will be explained shortly.

Define the set of non-critical transits P~ = {(p, q) | B,, B, distinct border nodes, (p, q) ¢ P*}.
Note that |[P*|+ |P~| = (g)

Now for each element (i, j) € P* define the linear equation ¢;;

Gij . T+ x5 =dy

And for each element (p, ¢) € P~ define the linear equation 1,

Upg: Tp+ Tq+ kpg = dpg

n

The and ¢;; together specify a system of (7) linear equations in unknowns, where n
pq j 108 y a8y 2 2

is the number of border nodes. The k,, and z}s are the unknowns which have to be determined.
We represent this system in matrix form A7 = D,

; : :
SRR R o5 dij

LA N kpq dpq

2Computing (AT A) requires O(n?) steps. The inverse (AT A)~! is formed by solving the system (AT A)z = ¢€;,
i = 1---n, where €; is the n-dimensional vector which has value 1 in the ith component but is 0 elsewhere. Each
of these n solutions can be computed using the LUP decomposition algorithm in O(n?) steps, so the matrix is
inverted in O(n?) steps. The final product (AT A)~1 AT is computed in O(n*) steps. So the entire procedure takes
O(n*) time.



where ¢*;; and 1", are the 0/1 coefficients corresponding to the linear equations ¢;; and v,
respectively.

Since each ,, introduces a new free variable k,,, it is clear that the coefficient matrix A of
the above system is non-singular if and only if the system consisting of just the ¢;; has a solution.

We can now more fully describe how to select the set PT: We sample the actual probabilities
of the transits, (or get some estimate of the traffic patterns between every pair of borders nodes
B; and Bj). Then we choose the n most demanding of these traffic routes, with the additional
constraint that the resulting system of ¢;; be non-singular.

We compute the unique solution X, and give the following interpretation to the values of the
components of the solution vector: The value of z; will be the quantity advertised on the ezception
spoke between the nucleus and border node B; in the star graph. The value of k,, is the additive
distortion between the truth and what is advertised about the (non-critical) transit between border
nodes B, and B,.

For any fixed border node B; we consider the multiset E; consisting of the n — 1 transit errors,
E; = {ki, | (i,q) € P~} U{0 for each (i,q) € P*}

We define k; = f(E;), where f is some aggregation function®, and consider k; to be a measure

of the average error inherent in the star representation for paths through border B; of the peer
group.
The final representation of the peer group is the set of z; (on the exception spokes of the star), and
the set of errors k;. These k; values serve as a “disclaimer”, specifying the average error inherent
in the star representation for transits through border B;. The representation constructed by this
approach is of size at most 2n = O(n).

Unfortunately, the current version of the PNNI standard does not have any provision for
advertising the set of errors k; . We recommend that the PNNI aggregation model be augmented
to permit the assignment of topology state parameters to the nucleus. If such a scheme is adopted,
the set of errors k; could be associated with the nucleus and included as part of the aggregated
representation. Remote switches trying to decide whether or not to route through a particular
peer group could then take into account not only its aggregated representation, but also the k;,
which are the peer group’s self-assessment of the fidelity of its advertised representation. In the
absence of such an extension to PNNI, we can still use Approach 2, and only advertise the set of
x; on the exception spokes of the star (without the £;).

This approach is well-suited for peer groups which experience regular, characterizable traffic
patterns, since it computes the star representation that completely preserves the truth about the
most commonly occurring transits.

4.3.1 Computational Complexity of Approach 2

We compute A~! only once (off-line) beforehand in O(n®) steps, just as in Approach 1.

3In the example discussed later in this paper we take f to be the average absolute value function i.e. if
1
E = {ei,es, - -,en_1}, then f(E) = 1= -3 " ej

n—1



Each time we need to re-aggregate: we multiply the precomputed A~! matrix by the current
value of the vector D. This multiplication can be done in O(n?) time, and the total space required
to store A™' and perform this multiplication is O(n*). Finally, we compute the k; using the
aggregation function f as above, (and if f runs in time linear in the size of its argument set E;),
this is completed in at most O(n?) time.

Thus the time requirement to perform an aggregation using Approach 2 (including preprocess-
ing) is O(n|V|log|V| + n|E| + n*), and the space requirement is O(|V'| + |E| + n*).

5 Remarks

5.1 Lowering Distortion Further

If this representation is still found to deviate unacceptably from the true topology, it can be
augmented in a systematic way to reduce the distortion, but at the cost of a larger representation.
Let us assume that we desire to finish with a representation that is within € multiplicative distortion
of the true topology. To achieve this we can add bypass links between borders B; and B; if

1 d::
<A <1
1+€_d*ij_ te

where d;; is the actual cost of the (B;, B;) transit and d*;; is the cost currently advertised. The
weight of such the additional bypass link would be d,;.

5.2 Ensuring Conservative Advertisement

We want to advertise d;; as the cost of traversing the peer group between border nodes B; and
B;. The least square solution in Approach 1 provides the best Z = (3, --,2),), and results in
Z; + 2; being advertised as the distance between border B; and B;. In some instances we may find
Z; + €5 > d;;. If we desire this advertisement to be conservative, we can add a bypass link with
value exactly d;; between border nodes B; and B;.

5.3 Measuring the Performance of an Aggregation Scheme:

We measure performance of an aggregation scheme K as follows:
Define

A= ) |dy—dj

1<i,j<n,i%j

where d;; is the true cost of traversing the peer group through the borders B; and B; and dj;
is what the aggregated representation advertises. For perfect aggregation one would like d;; and



dy; to be equal for all i and j (i # j). To quantify the extent to which this is achieved, we define
for each pair B;, B; of border nodes,

my = 1— 198~ 910
A
where c;; are real numbers between 0 and 1, chosen to represent the frequency of transits
between borders B; and B;. A value of ¢;; that is closer to 1 signifies more frequent transits
between the borders B; and Bj;, making it more important to minimize the distortion in the
compact representation for the cost of that transit.

Specifically, we view m;; as the degree to which the advertised cost matches the true cost of
the transit between borders B; and B;. It is easily verified that for any such transit, m;; equals 1
if and only if the advertised cost d;; exactly matches its true value d;;. Furthermore, any deviation
of the advertised value from the true value is reflected in the the corresponding m;; to an extent
that is linearly proportional to the importance assigned to the transit (as specified by the scalar
Cz‘j)-

We now define the performance of an aggregation scheme K with respect to a peer group with
N border nodes as:

i) (my)

N
()
Then 0 < Perf(K) < 1, and higher values of Perf(K) indicate better performance. Also, it is

clear that if the aggregation scheme is perfect, that is, d;; = dj;, then Perf(K) = 1.

Perf(K) =

6 Conclusion

Both approaches presented are viable, according to the criteria presented in section 2:

The proposed schemes transform a peer group structure into a compact form; the final repre-
sentation requires only O(n) space, where n is the number of border nodes of the peer group.

Within the confines of an O(n) space star, the proposed schemes optimally retain the infor-
mation about peer group structure that is critical for making good routing decisions. Approach 1
seeks to minimize the average distortion over all transits in a least squares sense; approach 2 builds
a star that completely preserves the n most critical transits. The schemes are dual: the first is best
suited for peergroups where traffic patterns are unpredictable; the second is suited for peergroups
where traffic patterns can be characterized.

The representations are efficiently computable since the most expensive operations (like invert-
ing large matrices) are performed off-line and only need to be done once. In fact, if we we assume,
not unreasonably, that the number of border nodes is significantly smaller than the number of
nodes in the peer group, say n < \V|%, then the time to aggregate using either of our schemes
becomes* O(n|V|log|V |+ n|E|). Note further that when a connection request arrives at the peer
group, a route computation must be carried out to select a path for the connection. This route

4Since then nV log V' dominates n*
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computation itself, using Dijkstra’s algorithm, would take O(|V|log|V| + |E|) time. Thus, if the
peer group leader performs re-aggregation every time n new connection requests have entered
the peer group, then the computational work required to do the re-aggregation can be amortized
against the unavoidable work required to compute the routes for the connections themselves. Our
schemes can therefore be executed scalably in a temporal sense: larger peer groups will need to
re-aggregate their topology less frequently if switches are not to be excessively burdened by the
computational demands of re-aggregation, but the length of this minimum time interval between
re-aggregations grows only linearly in n, the number of border nodes.

7 Examples

Let us consider a peer group with 6 border nodes. These six border nodes mean that there are
15 possible paths to route communication through this peer group. Let D be the 15 X 1 column
vector of the actual costs of the routing through the 6 pairs of borders. These are obtained from
the complete graph on 6 border nodes. These costs are the ones that we wish to advertise. The
objective is now to reduce this peer group to a compact form ”A Star” representation using both
the approaches. Figure 2 shows the complete graph on six border nodes obtained from the original
peer group.

Figure 2: Complete graph on 6 border nodes

The vector of true distances D is given below, and the degree of importance C for each of the
transits is as follows:

- dio T - 30 A - cis T - 1.0
dis 26 c13 1.0
dia 23 Cc14 1.0
dis 22.7 15 1.0
dig 23.8 c16 1.0
dos 28 o3 1.0
dog 24 co4 0.5

D =45 das = 23.6 , and C =gy cos = 0.7 (1)
dog 21 co6 0.5
d3a 21.9 c34 0.6
das 22 35 0.6
d3ze 21.9 c36 1.0
das 23.2 c45 0.9
da6 24 c46 0.9
L dse . 25.2 | L c56 A | 0.9

We compute the aggregated representation of the network using both approaches.
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7.1 Solution using approach 1

e S: represents the 15 x 6 matrix of coefficients for the 15 linear equations in six unknowns 1,
X9, T3, T4, T5, Tg. Lhese x’s will be weights on the star topology of the Logical Group Node
representing the given peer group in the parent group.

e D: represents the 15 x 1 column vector of the actual costs of traversing the peer group
through pairs of border nodes. These are obtained from the complete graph on six border
nodes. These costs are what we would like to advertise, and the precise values shown in
equation (1).

e W: are the values we obtain for the unknown x’s using least square approach ,that is, the
Approach 1 for solving the system SX = M . These are advertised on the edges of the star
of the LGN.

e D;: represents the 15 x 1 column vector of the values we obtain from the star using approach
1 which will approximate the true values specified in D.

-1 1 0 0 0 0 7
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
! 0 0 0 0 ! exceptioni 13.36
0 1 1 0 0 0 .
exceptiong 13.635
0 ! 0 ! 0 0 exception 11.935
s=| o 1 0o o0 1 o0 |, solwing STSW=5TD we get W= phions = : (2)
exceptiong 11.01
0 1 0 0 0 1 .
exceptiong 11.16
0 0 ! ! 0 0 exception 10.96
o o 1 0 1 o0 ptiong :
0 0 1 0 0 1
0 0 0 1 1 0
0 0 0 1 0 1
. O 0 0 0 1 1

The left half of figure 3 shows the compact representation of the complete graph in Figure 1.
The transit costs implied by this representation are given by D;.

Now we measure the performance of this approach according to our formulation in section 5.3.

d1s - 26.99 romiz r 0.87 A
di3 25.29 mis 0.97
3*4 24.37 miq 0.94
5 24.52 mis 0.92
diﬁ 24.32 mig 0.97
dsg 25.57 mos 0.90
ds, 24.64 moy 0.98

D1 =g.5 dss = 24.79 |, and Pi=g.; mos = 0.96 (3)

dig 24.59 mog 0.92
diy 22.94 maq 0.97
dsg 23.09 mas 0.97
d3g 22.89 mag 0.95
dis 22.17 mas 0.96
dg 21.97 mag 0.92

L ¥y | | 2212 L mss L o0.88

Ay =X |dy; — dj;| = 24.56, and P, shows the degree of match between d;; and dj; for all pairs
i, g (i # 7).
Now assuming a degree of importance for each transit as specified in the vector C', and using

the vector P;, we compute that performance of this approach is 0.94 according to our formulation
in section 5.3.
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7.2 Solution using approach 2

e R: represents the 15 x 15 matrix of coefficients for the 15 linear equations in fifteen unknowns
X1, To, T3, Tg, Ts, Te, A1 A2 A3 G4 G5 Gg G7 Gg Gg. These x’s will be weights on the star topology
of the Logical Group Node representing the given peer group in the parent group. The values
of the a’s that we obtained will be used to compute the values for the k;’s for ¢ = 2,---,n,
that will be assigned to the nucleus of the LGN.

(4)

COOHHHOOOHROOORO
OCRFHOCOHOOHROOOHOO
HFOHOHOOHOOOROOO
HFHFOROOHOOOHROOOO
CoO0COCOCOCOHOOOOOO
CoOocO0CoOOrROOOOOOO
CoocOCOoOrROOOOOOOO
CO0COOCrHOOOOOOOOO
COOCOHOOOOOOOOOO
COOHOOOOOOOOOOO
CoOrRrOCOCOOO0OOO0OOO
OCHOOCOOOOOOOOOO
HFOOOOCOOCOOOOOOOO

[=NeoNoNoRoNeloleNoRaN ) ol
CO0OCOHHRHERHOOOOH

e D: represents the 15 x 1 column vector of the actual costs of traversing the peer group
through pairs of border nodes. These are obtained from the complete graph on six border
nodes. These costs are what we would like to advertise, and the precise values shown in
equation (1).

o W, are the values we obtain on the edges of the star graph .
e K: is the vector that is assigned to the nucleus of the LGN .

e D,: represents the 15 x 1 column vector of the values we obtain from the star as well as the
vector at the nucleus using approach 2 which will approximate the true values given in M.

exceptionj 14 error ki 0
exceptiong 16 error ko 1.38
exception. 12 error k; .46
Wz = exceptioni = 9 » end K= error ki = 2.52 (5)
exceptiong 8.7 error kg 2.92
exceptiong 9.8 error kg 3.36

The right half of figure 3 shows the compact representation of the complete graph in 1 using
approach 2. Now we measure the performance of this approach according to our formulation in
section 5.3.

Ag = X |dij — dj;| =26.6 The transit costs implied by this representation are:

romiz ] rool 15 - 30 T
mi13 1 dls 26
miq 1 dl‘* 23
mis 1 dl5 22.7
mie 1 d16 23.8
mo3 1 dés 28
mag 0.98 dz, 25

Py = mas = 0.97 , and Do = dog = 24.7 (6)
maog 0.90 d;6 25.8
maa 0.97 d3, 21
mas 0.97 d§5 20.7
m3e 0.99 d§6 21.8
mas 0.81 d§5 17.7
mag 0.82 i 18.8
L mse L o076 4] | 185
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Here P, shows the degree of match between d;; and dj; for all pairs 4, j (i # j)-

Now assuming a degree of importance for each transit as specified in the vector C', and using
the vector P, we compute that performance of this approach is 0.95 according to our formulation
in section 5.3.
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Figure 3: Compact representation using approaches 1 (left) and 2 (right)
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