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Abstract— This paper describes the design and implementa-
tion of Optiprism, an agent-based network management system
(NMS) providing configuration and fault management services for
all-optical networks. Optiprism is designed to support (1) a scal-
able architecture consisting of a distributed hierarchy of software
agents, or managers (2) the ability to alter the hierarchy as the
network evolves by adding, removing or upgrading managers (3)
reorganization of physical deployment for better responsiveness
(4) an innovative browser agent providing scalable end-user inter-
action with the distributed NMS.

I. Introduction
Traditional network management software implementations

have used centralized paradigms based on SNMPv1 or SN-
MPv2c, or weakly distributed hierarchical paradigms based on
SNMPv2, RMON, CMIP, or CMIP derivatives such as TMN
[15, p. 5]. While these approaches are feasible in small net-
works, their communication costs grow linearly with the num-
ber of devices [19, p. 4]. Wavelength division multiplexing
(WDM) networks present additional difficulties since the cen-
tral problem of routing and wavelength assignment (RWA) [18]
is NP-complete [20] and even heuristic approaches to it are
computationally expensive [4, p. 2]).

An effective optical NMS must thus address the core prob-
lem of scalability. We contend that a strongly distributed de-
ployment of a hierarchy of cooperating intelligent agents [15,
p. 9] or “managers” would yield significantly reduced process-
ing requirements at the client-side. These managers would
maintain aggregated information such as route availability and
fault reports about recursively smaller sections of the network.
Moreover, if the network’s state was hierarchically distributed,
then management applications would not need to establish di-
rect connections to every network element. Instead, the admin-
istrator would interact with high-level supervisory managers.
Control operations (e.g. lightpath provisioning and teardown)
would be issued to these high-level managers, which would
compute routes and delegate partitioned connection requests to
their subordinate managers. Monitoring of alarms and alerts
would operate in the reverse direction: subordinate managers
would report fault conditions to their supervisor. A manage-
ment application would only need to communicate with high-
level supervisors in order to manipulate and monitor the optical
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network. The next sections describe the design and implemen-
tation of such a network management system.

II. Design

In designing Optiprism, we adopted a distributed architecture
because it enabled us to meet four important objectives. The
most critical is scalability. In large networks, the processing
of management requests (e.g. route selection) presents com-
putational burdens that would ultimately choke a centralized
NMS. In contrast, a distributed architecture can amortize this
computational overhead against a set of processes distributed
throughout the computational environment [10, p. 1]. Second,
a distributed architecture is maintainable because it is easier to
augment as the network grows. Third, a distributed architec-
ture permits computations to be closer to information sources,
reducing latency and total control traffic [7] [12], thereby yield-
ing better responsiveness. This benefit is amplified if the ar-
chitecture supports dynamic re-distribution of managers, since
then the NMS can adapt to circumvent computation and com-
munication hot-spots in its environment [11, p. 32]. Finally,
adopting a distributed architecture makes it possible to develop
end-user management applications which exhibit scalable in-
teraction, i.e. applications that interact with only a scalable
subset of the NMS at a given time. We now describe how the
design of Optiprism strives to meet these objectives.

A. Scalability

An effective optical NMS must able to coordinate the con-
trol planes of hundreds of optical switches. This objective led
to the choice of a hierarchical architecture. In Optiprism, each
manager can be a supervisor, composed of several subordinate
managers. Conversely, each manager—with the exception of a
unique “root”—is subordinate to some supervisor. In a supervi-
sory role, each manager provides an interface to the services it
can implement using the functionality of its subordinates. Two
managers are called peers if they have the same supervisor.

Complications arising from this design choice include: (i)
higher level managers may experience greater load and (ii) fail-
ures at higher levels may have non-local negative side-effects
on the NMS. Presently these concerns are addressed by assign-
ing high-level managers to more reliable machines that have
larger memory and processing power. We are investigating the
possibility of addressing both issues through replication and
clustering of managers.



B. Maintainability

The NMS architecture should be easy to alter as the network
evolves. In a hierarchical NMS, this would be achieved by ad-
dition and removal of managers, and by restructuring of the
hierarchy. Adding new hardware to the NMS domain should
require little more than inserting a new specialized subordinate
into the hierarchy. Let us see how Optiprism achieves this.

In Optiprism, there are three types of managers:
1. Element managers exist at the lowest level of the manager

hierarchy. Each manager controls and monitors a physical
device via specialized communication protocols.

2. Subnet managers delegate to and aggregate from lower
level managers.

These two types of managers expose a command interface to the
next higher level and a notification interface to the next lower
level. All command and notification interfaces are functionally
identical, regardless of the manager’s level.

Making all subnet and element managers indistinguishable
makes it possible to add, remove and splice managers into an
existing Optiprism hierarchy at run-time. It has also yielded
benefits of simplicity in their implementation and interactions,
while providing encapsulation at the manager level. Subnet
managers are truly “virtual optical switches”.

One issue with this approach is that element managers for
new devices must adhere to a specification representing the
least common denominator of the functionality of all devices.
As vendors adopt standards for optical network provisioning
and management, this penalty will be alleviated. An agent-
based attempt at such standardization is [8] by FIPA.

Physical network topology is reflected by deployment of:
3. Link managers, each of which represent a physical con-

nection between two elements/subnets.
Subnet managers determine their internal topology (i.e. the
connectivity among their subordinate subnets/elements) by
consulting subordinate link managers. In addition, they dis-
cover connectivity with peer subnets/elements by consulting
their peer link managers. In the terminology of [5], all Op-
tiprism managers can be considered netlets because they have a
persistent process-based life-cycle model [11].

C. Responsiveness

The performance of an agent-based NMS is influenced by the
characteristics of both the hardware on which the agents reside
and the network over which they communicate. Cost factors
make it impractical to dedicate entire machines and separate
networks solely for the NMS. On the other hand, permitting
managers to mingle with external processes on multi-purpose
machines means that the system needs to sense fluctuations in
performance characteristics and act to minimize impact on the
NMS. This requirement underscores the need to support pro-
cess mobility [11, pp. 26-33] as a core feature of the NMS.
One drawback of allowing managers to be mobile is the added
complexity of inter-manager communication: managers need

to communicate with each other reliably despite their ability to
move. Another complexity introduced is that the NMS must
collect and provide sufficient information, from which deci-
sions about manager migration can be made. Section III-E de-
scribes how Optiprism addresses some of these concerns.

D. Scalable Interaction

An NMS must provide an application for network adminis-
trators to access network management services. This applica-
tion needs to communicate with the NMS’s managers so as to
obtain information about the state of the network and the range
of commands that may be initiated. This information would
then be used to populate the application’s user-interface. Scal-
ability dictates that the application cannot expect to communi-
cate simultaneously with all running managers at any time.

Optiprism provides a browser agent as a scalable solution to
user interaction with a large hierarchical NMS. This agent is a
leaf in the hierarchy of managers and may only communicate
with managers that are visible from it. This set is defined to be
the browser’s peers, its supervisor’s peers, its supervisor’s su-
pervisor’s peers, and so on up to a configurable number of levels
that we call its horizon. Visibility ensures a “graceful degrada-
tion of resolution” which provides the administrator with full
access to parts of the network “near” the task at hand, while
still maintaining a perspective on the “bigger picture”.

An administrator can change the browser agent’s location
within the hierarchy in one of two ways: (i) promotion causes
it to become a peer of its supervisor; (ii) demotion causes it to
become the subordinate of one of its peers. This logical navi-
gation of the browser agent causes its set of visible managers to
change in a manner that corresponds to (i) zooming out and (ii)
zooming in on particular regions of the network. Many browser
agents can be instantiated simultaneously, to provide manage-
ment from various vantage points in the hierarchy.

III. Implementation

Optiprism is implemented using a Java-based multi-agent
framework called CHIME (Cellular Hierarchical Information
Modeling Environment [14]), developed at the Naval Research
Laboratory. Like other agent frameworks [6], [16], [21], it pro-
vides an execution environment for mobile agent code. This
execution environment is called a depot. Every machine that is
part of CHIME runs a depot. CHIME also provides a compo-
nent API for agent development similar to the Java Agent Spec-
ification [1]. Notable differences between CHIME and prior
frameworks include (i) intrinsic support for agent hierarchy, (ii)
support for logical navigation, and (iii) enforcement of the vis-
ibility constraints (as presented in section II-D). A CHIME
agent may interact with the depot in which it resides and re-
quest (i) migration to a different depot, (ii) logical navigation
via promotion or demotion, or (iii) a structured directory of vis-
ible agents. Optiprism managers and browsers are derived from
CHIME’s agent classes and thus inherit the same capabilities.
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Fig. 1. Device-based network partitioning.

A. Installing Optiprism

Optiprism has been deployed and tested on the Multi-
wavelength Optical Network � (MONET) switches [2] of
the Advanced Technology Demonstration Network (ATDnet).
ATDnet presently consists of six sites connected in the dual-
homed multi-ring topology [17] (see top left of figure 1).
Two of the sites (NRL and NSA) have Wavelength Selec-
tive Cross-Connect (WSXC) switches while the remaining four
have Wavelength Add/Drop Multiplexer (WADM) units. Each
WSXC supports four transport interfaces (TI). Each TI car-
ries eight wavelengths using wavelength division multiplexing
(WDM). The WADM units support two similar TIs. Each net-
work element has several single-wavelength client interfaces
(CCI) where the optical signal enters and exits the WDM layer.

In general, to install an Optiprism system, the network topol-
ogy is determined by a network administrator, who partitions
it hierarchically by assigning an Optiprism address to each net-
work element and indicating link endpoints. Each address is a
dotted sequence of unique names. An installer utility takes this
description and instantiates a corresponding hierarchy of ele-
ment, link, and subnet managers, distributing these in available
depots. Each element manager immediately initiates a session
with its corresponding physical device. The manager then uses
this session for transmitting commands and receiving notifica-
tions from the device. Figure 1 shows the hierarchy for ATDnet.

B. Management Subsystems

The OSI management model categorizes network manage-
ment into several functional areas. Optiprism presently ad-
dresses two areas needed in the ATDnet research environment:
(i) Configuration management (CM), which addresses the prob-
lem of lightpath provisioning, and (ii) Fault management (FM),
which enables monitoring of hardware alarms and alerts. Each
�
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functional area is embodied in a management subsystem, and
a manager is then composed of a set of subsystems. Presently
Optiprism subnet and element managers contain CM and FM
subsystems. In the future, performance and security manage-
ment subsystems will be supported.

Communication between managers takes place via delega-
tion agents, or deglets (see [5]). A deglet is a lightweight agent
with a transient task-based life-cycle model [11]. Optiprism de-
fines two classes of deglets: downward flowing control deglets
and upward flowing monitoring deglets.

When a subnet manager receives a request, it formulates a
set of subtasks for its subordinates. Each subtask is transported
to a subordinate by a control deglet. Upon reaching its target
manager, each control deglet attempts to perform the intended
subtask. The deglet then encapsulates a report of the side effects
and carries this back to the initiating manager. When all the
deglets have returned, the manager aggregates the reports from
below into a report for the original request. Collectively, control
deglets are referred to as control flow.

A manager may send asynchronous notifications to its super-
visor by using monitoring deglets. Monitoring deglets encapsu-
late information about changes in the beliefs [9] of their sender.
Upon reaching its target supervisor, each monitoring deglet at-
tempts to notify the supervisor of the change in the subordi-
nate’s beliefs. The deglet then carries an acknowledgment of
this notification back to the originating manager. Collectively,
monitoring deglets are referred to as monitoring flow.

C. Configuration Management

To illustrate the operation of control and monitoring deglets,
we describe how the connection management subsystem (CM)
provides support for lightpath provisioning. The procedure for
handling teardown requests is similar but simpler.

1) CM Monitoring Flow : CM monitoring flow takes the
form of CAT-Status deglets. These contain a Connection Avail-
ability Table (CAT) which describes the availability of routes
across a subnet/element. At the element level, the CAT is the
complement of the fabric table modulo the wavelength conver-
sion capabilities of the device. At higher levels, each subnet
manager generates its own CAT by aggregating the information
from the CATs of its subordinates as follows.

Each CM periodically obtains a CAT from each of its sub-
ordinates. The CM maintains two graphs: (i) a compressed
graph that has one vertex for each of its subnet/element sub-
ordinates and one edge for each of its link subordinates, and
(ii) an exploded graph derived from the compressed graph by
replacing each link with a set of parallel edges (one per wave-
length) and replacing each vertex with the CAT obtained from
the corresponding subordinate. Figure 2 depicts the relation-
ship between the compressed and exploded graphs. A vertex
in the exploded graph corresponds to a particular wavelength
on an interface advertised by some subordinate. The CM con-
siders each pair of wavelengths
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wavelength on a border output TI, or (ii)
���

is a wavelength on
an input compliant client interface (CCI) and

���
is a wavelength

on a border output TI, or (iii)
�
�

is a wavelength on a border in-
put TI and

�	�
is a wavelength on an output CCI. For each such

pair, the CM uses its exploded graph to compute a route be-
tween the corresponding vertices. If a route is found, the CM
makes an entry in its own CAT. Once the CM has considered all
such pairs

� � ��� �
, it sends the constructed CAT upwards to its

supervisor. This procedure recurses upwards.
Several schemes are used to speed up CAT aggregation. To

reduce the number of computations required in CAT aggrega-
tion, access points (CCIs) are grouped based on their connec-
tivity within that subnet. The precise criteria for determining
“similar connectivity” is tunable, in order to obtain an accept-
able trade-off between accuracy and computational cost. To
reduce the frequency of CAT computation, a random sampling
of CAT entries is recomputed periodically and used to estimate
the likelihood that a new CAT would be “significantly different”
from the one previously advertised. Whenever this likelihood
exceeds a threshold, the entire CAT is recomputed. We also use
techniques similar to those proposed for reducing routing traffic
in optical OSPF [3].

2) CM Control Flow : Lightpath provisioning is achieved
by CM control flow. Requests are delivered via deglets to the
highest subnet manager containing both endpoints of the de-
sired trail. From there, requests proceed recursively in parallel
down the tree until they reach element managers, which create
individual fabric connections in hardware. The trail partition-
ing process follows the guidelines of ITU-T G.805 [13]. To
perform routing, each manager uses its exploded graph to de-
termine a suitable path across the subnet. The path determines
a set of lightpath provisioning subtasks that are then sent to ap-
propriate subordinates via control deglets. Returning deglets
indicate the success or failure of each subtask. A failure can
result in a fail-fast response (i.e. rollback of any completed

subtasks, and immediately report failure to the supervisor) or
a reroute response (i.e. attempt to route around uncooperative
subordinates).

D. Fault Management

The purpose of the Fault Management subsystem (FM) is to
detect and diagnose network faults. We describe the roles of
control and monitoring deglets in the FM.

1) FM Monitoring Flow : The monitoring flow for the FM
consists of fault notifications. These are encoded in Fault-
Indication (FI) and Fault-Clear (FC) deglets which convey
severity, location, and type of network failure. FI/FC messages
propagate upwards in the tree. Intelligent filtering is performed
at each level, customized to the particular monitoring character-
istics desired (e.g. severity, location, type, etc). Each FM filters
and aggregates fault information received from its subordinates
and passes this upward to the next higher level.

2) FM Control Flow : The control flow of the FM enables
run-time configuration of the corresponding monitoring flow
for an FM-enabled subnet or element manager. For example,
the parameters determining the fault aggregation policy of each
FM are configurable via control deglets. Similarly, control de-
glets are used to register Fault-Handlers inside an FM. When-
ever an FM receives an FI/FC message from a subordinate, it
reports this message to each registered Fault-Handler, which
can then determine how to respond to the error condition.

E. Manager Communication & Mobility

Allowing managers to be mobile introduces complications to
inter-manager communication. Optiprism addresses these is-
sues by using CHIME’s two-layer inter-agent communication
protocol stack. The Inter-Cell Transport Layer (ICTL) provides
FIFO delivery between pairs of agents, and below it, the Inter-
Depot Transport Layer (IDTL) provides FIFO delivery between
pairs of depots. Managers communicate via ICTL messages
which are encapsulated into IDTL messages during inter-depot
transit. The address of the target depot is obtained by resolv-
ing the name of the destination agent using a distributed agent
look-up service. Inbound messages are unpacked and delivered
to their target only if the target’s name is found in the directory
of local agents. Otherwise, the sending agent is blocked from
further communication with the target, until its local look-up
service has obtained a new binding.

Optiprism uses CHIME’s Traffic Analyzer Module (TAM)
and Microbenchmark Facility (MBF) to give managers infor-
mation needed to make decisions about migration. The TAM
maintains statistics on round-trip latency and cumulative vol-
ume of traffic from each locally resident manager to the depots
with which it communicates. The MBF takes local measure-
ments of average CPU and memory usage. A manager may use
this information to determine when to request migration, and
to where. CHIME follows the paradigm of “Agent proposes,
Depot disposes”. Either the source or the destination depot can



reject an agent’s request to migrate. We are further investigating
optimal criteria for (i) when managers should request to migrate
and (ii) when depots should allow managers to migrate into or
out of them.

Fig. 3. The browser agent’s window when it is a subordinate of the East subnet
manager.

F. The Management Browser

The browser communicates each visible manager � by col-
lecting a model of � . This model ������� is an active object
created dynamically by � , with functionality specialized to the
capabilities of the browser agent. ������� maintains a bidirec-
tional channel to its backing manager � ; this channel operates
transparently to physical mobility of the manager.

The browser displays a window to the user and asks each
collected model to render itself as a user-interface component
within this window. The visual representation of each model
depicts the state of its backing manager (e.g. network elements
are rendered as images reflecting their operational characteris-
tics). Figure 3 shows the window when the browser agent is a
subordinate of the East subnet manager (see figure 1) and has
obtained models of the West, NRL, NSA, and NASA subnet
managers plus six link managers.

The browser agent is “featureless” except for its ability to
navigate within the hierarchy. As the browser is made to navi-
gate, it updates the set of models it owns based on visibility, and
refreshes the window by requesting the models to render them-
selves. All other functionality comes directly from the models.
This design makes it possible to perform live upgrades of man-
ager software without altering the browser.

The user can interact with the visual representations of mod-
els to get more information or issue requests. The browser dis-
patches mouse clicks and key presses to the model over which

Fig. 4. Configuration management dialog.

Fig. 5. Fault management dialog.

they occur. The model can perform immediate action or present
additional dialogs for extended input. For example, each sub-
net manager’s model provides a dialog to select pairs of in-
put/output connection points for trail provisioning (see figure
4). These models also offer extended FM information in a dia-
log that lists the outstanding fault conditions (see figure 5).

IV. Conclusion

Optiprism’s scalable and maintainable architecture relies on
the distributed deployment of a hierarchy of cooperating intel-
ligent manager agents. By using CHIME services, managers
and browsers have access to physical mobility and logical nav-
igation. The Optiprism browser provides a management appli-
cation which supports scalable interaction with NMS services.
Optiprism has been successfully deployed within the ATDnet
optical network.

Enhancements to Optiprism will include (i) design and im-
plementation of the performance and security management
subsystems, (ii) devising algorithms for fast CAT aggregation
within the CM subsystem, and (iii) determining effective poli-
cies for manager migration, to enable the NMS to circumvent
computation and communication hot-spots in its environment.
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