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Positively generated subgroups of free groups
and the Hanna Neumann conjecture

Bilal Khan

ABSTRACT. The Hanna Neumann conjecture states that if F' is a free group,
then for all subgroups H, K < F,

rank(H N K) — 1 < [rank(H) — 1] [rank(K) — 1]
Previous research on the conjecture has proceeded largely by “translating” the
group-theoretic properties of subgroups of free groups into the graph-theoretic
properties of their corresponding foldings or finite automata. This paper at-
tempts to elaborate the reverse.

In particular, in this paper we give group-theoretic interpretation of the
well-known graph-theoretic property of strong connectivity. Specifically, we
show that strong connectivity of a subgroup’s folding corresponds exactly to
the property that the subgroup is positively generated (i.e. is generated by
a set of words containing no negative exponents). To accomplish this, we
present the notion of a strong directed trail decomposition of a directed graph;
this decomposition provides a useful computational tool, and facilitates induc-
tive arguments about the properties of positively generated subgroups of free
groups.

As an example application of directed trail decomposition techniques, we
prove that if a subgroup H < F is positively generated, or if its associated
folding I'y has no source or sink vertices, then for all subgroups K < F, the
Hanna Neumann conjecture holds for the pair (H, K). We also show that if a
subgroup of a free group is positively generated, then it has a positive basis.
Finally, we describe an algorithm which decides whether an arbitrary finitely
generated subgroup of a free group is positively generated, and if so, outputs
a positive basis for the subgroup.

1. Introduction

Improving Howson’s earlier bound [5] on the rank of intersections of finitely
generated (f.g.) subgroups of free groups, H. Neumann proved in [9] that any
H, K <ty F must satisfy

rank(HNK) — 1 < 2[rank(H) — 1][rank(K) — 1]

The stronger assertion obtained by omitting the factor of 2 has come to be known
as the Hanna Neumann conjecture. In [1], Burns improved H. Neumann’s bound
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by showing that in fact

rank(HNK)—1 < 2[rank(H) — 1][rank(K) — 1]
—min(rank(H) — 1,rank(K) — 1)

In 1983, J. Stallings introduced the notion of a folding and showed how to apply
these objects to the study of subgroups of free groups [15]: Recall the well-defined
constructive map which assigns to each finitely generated subgroup H of a free
group F = F(X), a corresponding folding 'y = (Vu, Ex). We view the folding
Tx as a deterministic finite automaton, represented as a directed multigraph (with
loops), with each directed edge labeled by an element of the ground set X. The
folding I" g enjoys the property that the set of freely reduced elements in H coincides
with the set of words that can be read along closed non-backtracking walks that
start and end at a distinguished vertex 1y € Vj.

Stallings’s approach was applied by Gersten in [4] to solve certain special cases
of the conjecture. Similar techniques were developed over a sequence of papers by
Imrich [7, 6], Nickolas [11], and Servatius [13] who gave alternate proofs of Burns’
bound and resolved special cases of the conjecture. In 1989, W. Neumann showed
that the conjecture is, in a sense, true “with probability 1” for randomly chosen sub-
groups of free groups [10], and proposed a stronger form of the conjecture. In 1992,
Tardos proved in [16] that the conjecture is true if one of the two subgroups has
rank 2. In 1994, Warren Dicks showed that the strong Hanna Neumann conjecture
is equivalent to a conjecture on bipartite graphs, which he termed the Amalga-
mated Graph conjecture [2]. In 1996, Tardos used Dicks’ method to give the first
new bound for the general case in [17], where he proved that VH, K <z, F,

rank(HNK)—1 < 2[rank(H) — 1][rank(K) — 1]
—rank(H) —rank(K) +1

This is the best known bound for the general case; the conjecture remains open.

To date, research on the Hanna Neumann conjecture has focused largely on
“translating” the group-theoretic properties of subgroups of free groups into the
graph-theoretic properties of their corresponding foldings. In 1999, at the NY
Group Theory Seminar, A. Miasnikov proposed a research project to elaborate the
reverse, i.e. to interpret well-known properties of graphs in group-theoretic terms.
In this paper, we provide a group-theoretic interpretation of the well-known graph-
theoretic property of strong connectivity:

DEFINITION 1.1. Given a directed graph T' = (V, E) define the binary equiva-
lence relation SC CV x V (strong connectivity). Specifically, for u,v € V

u=wv, or
(u,v) € SC + [There is a directed path from u to v,
and there is a directed path from v to u]

A directed graph T' = (V, E) is strongly connected iff SC =V x V.

DEFINITION 1.2. Given a word w € F(X) = F({z1,...,2z,}), we say that w
is positive (with respect to basis X) if its freely reduced form consists only of the
symbols z1, ..., 2z, (and contains no occurrence of xl_l, s, b).
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DEFINITION 1.3. A subgroup H < F(X) is said to have a positive generating
set (or simply: “H is positively generated”) if 35 C H such that (S) = H and
Yw € S, w is positive. Note that unless explicitly stated, S need not be a basis.

We shall demonstrate that strong connectivity of the folding of a subgroup
corresponds precisely to the property that the subgroup is positively generated. To
do this, we shall first define the directed trail decomposition of a directed graph,
and demonstrate that strong connectivity of a folding is equivalent to it possessing
a certain decomposition of this type. Foldings of positively generated subgroups
of free groups will then be shown to be strongly connected, and hence to possess
such decompositions. The decompositions provide a useful computational tool, and
enable inductive arguments about the properties of positively generated subgroups
of free groups.

As an example application of directed trail decomposition techniques, we will
prove that if a subgroup H is positively generated, or if its associated folding I'yy
has no source or sink vertices, then for all subgroups K, the Hanna Neumann
conjecture holds for the pair H, K. This result was obtained independently using
different techniques by Prof. J. Meakin, and was described by him at the Albany
Group Theory Conference 2000, where this work was also presented.

2. Results

2.1. Strong connectivity & directed trail decompositions. In this sec-
tion we define (strong) directed trail decompositions and show that they are inti-
mately related to strong connectivity of directed graphs. These decompositions will
be used in later sections to prove statements about positively generated subgroups
of free groups.

DEFINITION 2.1. A directed trail P in a directed graph T' = (V, E) is a
non-empty sequence of distinct directed edges e1,es,...,em (e, € E;i=1,...,m)
for which tail(ej+1) = head(e;) (1 = 1,...,m — 1). The length of P is denoted
|P| = m. The start of P is denoted as s(P) = tail(e1), and the terminus of P as
t(P) = head(e|p|).

DEFINITION 2.2. A self-avoiding directed trail P = (ej,e2,...,en) in a
directed graph I' = (V,E) is a directed trail which additionally satisfies for all
i,j € {1,...,m}, i # j = [tail(e;) # tail(e;) and head(e;) # head(e;)]. Notice
that by this definition, a self-avoiding trail may satisfy head(ey,) = tail(e;).

REMARK 2.3. It is easy to verify that given a directed trail P = (ey, es,...,€p|)

in T' = (V, E), there is always a self-avoiding trail P' = (f1, fa,..., fip|) where for
i=1,...,|P|, fi € {e1,ez,...,e/p/} and s(P) = s(P'), t(P) = t(P').

DEFINITION 2.4. A sequence of directed trails P = (F,..., P,) in a directed
graph ' = (V, E) is called a directed trail decomposition of T if it satisfies the
following 3 conditions:

(1) The trails are a partition of the edges of I':

n
UPi=Eandi#j=PnP=0
=0

(2) s(Py) = t(FPy), and we denote this vertex as 1r.
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(3) For each i =1,...,n, the directed trail P; satisfies:

VIPIn U VIBI£0 = VIEIN U VB = (5P, 1B}

=0

i
VIPINJVIP]I=0 = s(P)=tP)
j=0
The above decomposition naturally extends Whitney’s definition of “ear de-
compositions” of 2-edge connected undirected graphs [19] to the class of directed
graphs.

DEFINITION 2.5. A strong directed trail decomposition of a directed graph
I'= (V,E) is a directed trail decomposition Py,..., P, of T which satisfies

Vie{1,...,n}, V[P]N U VIP]#0
=0

Strong directed trail decompositions are the natural directed counterpart of
Whitney’s “open ear decomposition” for 2-vertex connected undirected graphs [19].

The next two lemmas demonstrate that strong connectivity of a directed graph
T is equivalent to the existence of a strong directed trail decomposition of T'.

LEMMA 2.6. IfT' = (V, E) has a strong directed trail decomposition, then T' is
a strongly connected directed graph.

PrOOF. Let Pp,...,P, be a strong directed trail decomposition of I'. Let
vg € V be arbitrary; we show there is a directed trail from vy to 1 and a directed
trail from 1p to vy.

Clearly, vo € P;, for some ig € {0,...,n}. Successively, for each m > 1, if
im—1 7# 0 we define v,,, = t(F;,,_,) and choose i,, < im,—1 such that v, € P;,_ . Since
0,415 - - - »im, - - - are monotonically decreasing indices from the finite set {0, ...,n},
there is some M sufficiently large for which ip;_; = 0, and hence vy = 1p. By
concatenating final segments of the directed trails P, F;,,..., Pi,,_,, we obtain
the directed trail
P;, Piyr_y

Vg M VL M ... o~ ooy = 1p
which connects vg to 1r.

Put jo = io. Successively, for each £ > 1, if j,_1 # 0 we define uy = s(Pj,_,)
and choose j; < jy—1 such that u, € P;,. Since jo, j1,---,J¢,--. are monotonically
decreasing indices from the finite set {0,...,n}, there is some L sufficiently large
for which jp_; = 0, and hence uy, = 1. By concatenating initial segments of the
directed trails P;, _,, Pj,_,,...,Pj,, we obtain the directed trail

Pj; 4 Pj;_o P; P;
Ir=ur ~ ur_1 ~ ...~ up ~ Y

connecting 1 to vg.

The converse of lemma 2.6 is also true, as we now show.

LEMMA 2.7. IfT' = (V,E) is a strongly connected directed graph, then T has a
strong directed trail decomposition consisting of self-avoiding directed trails.
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ProOOF. Fix an arbitrary vertex in I, and denote it as 1r. We give the following

effective procedure for constructing a directed trail decomposition. First, define

T, % (1r,0). Then, starting with i = 0:

(1) If V[I;] = V, proceed to step 2. Otherwise, fix any v € V\V[[;]. Since I'
is strongly connected, we can choose a directed trail s from 1r to v, and
a directed trail ¢ from v to 1p. Suppose that s is the sequence of edges
(81,82,..-,8]5), where tail(s;) = 1r and head(s;) = v. Fix s; to be
the last edge in s for which tail(s;) € V[L;]; put ; = tail(s;). Similarly,
suppose that ¢ is the sequence of edges (t1,...,ty), where tail(t;) = v and
head(t);) = 1r. Fix t; to be the first edge in ¢ for which head(ty) € V[I'i];
put y; = head(ty). Define

P; = (8j,8j415--+58]s| 15 th—1,t)

Clearly P; is a trail from z; to y;. In light of remark 2.3, we may (by
suitably adjusting our choice of v, s and t) assume that P; is a self-avoiding
trail. Put I';;1 = T'; U P;. Increment i. Repeat step 1.

(2) If E[I;] = E, halt. Otherwise, fix any e; = (x;,y;) € E\E[l';]. Take the
ith directed trail to be P; = (e;) and put I';4; = I'; U P;. Increment .
Repeat step 2.

Notice that at each iteration of the procedure, the trail P; is constructed so
that it does not contain any edges already in T';. Indeed, for ¢ > 0, P; attaches to T';
at precisely its start and terminus vertices z;, y; respectively. Thus, the procedure
outputs a strong directed trail decomposition of I' that consists of self-avoiding
directed trails.

d

We shall later need the following technical refinement of the above lemma.

COROLLARY 2.8. If I' = (V, E) is a strongly connected directed graph, then T’
has a strong directed trail decomposition consisting of self-avoiding directed trails
Py,...,P, such that Ty = (1r,0) and T; = U;;t P; (fori =1,...n+1) are strongly
connected directed graphs.

ProOF. Note that in the proof of lemma 2.7, for each ¢ = 1,...n + 1, the
sequence Py, ..., P;_; forms a strong directed trail decomposition of I';. Thus, by
lemma 2.6, each T'; (¢ =0,...,n + 1) is a strongly connected directed graph. |

2.2. Strong connectivity and positive generating sets. In this section
we describe the close connection between the class of positively generated finite
rank subgroups of a free group, and the class of strongly connected foldings. To
begin, the next lemma shows that if a finitely generated subgroup H of a free group
F is generated by a set of positive words, then H must necessarily have a strongly
connected folding.

LEMMA 2.9. Let H be a finitely generated subgroup of a free group F(X), and
let T = (V, E) be the folding of H. If H is positively generated (with respect to basis
X), then Ty is a strongly connected directed graph.
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ProOF. Let S = {ws, -+ ,w,} be a positive generating set for H, i.e. H = (S),
where w; is positive for all i = 1,...,n.

Let Rg be the graph obtained as follows: (1) Construct n directed cycles
ca =W, E1), ..., ¢n = (Vo Ep), where |V;| = |w;|. (2) Pick one vertex from each
of the cycles, and identify this subset of vertices; denote the resulting vertex 1.
(3) Label cycle ¢;’s edges by successive letters of w;, starting at vertex 1. We call
the resulting labelled directed graph Ry the rose of H. Because the generating
set .S consists of positive words, Ry contains a directed path p,, , between any two
vertices u and v—simply take p, , to be the path that goes from u to the vertex
1y followed by the path from 1y to v.

Wi

I_H
folding
process
—_—
Tt

Wy

Now recall the “folding process” n that transforms Ry into the folding T'g:
Repeatedly identify pairs of edges e, e’ which satisfy

label(e) = label(e') A [head(e) = head(e') V tail(e) = tail(e')]

It is easy to see that if w is any freely reduced word that can be read in Ry
along a trail that starts at vertex u and ends at vertex v, then w can also be read in
Ty along a trail that starts at vertex 7(u) and ends at vertex w(v). Since positive
words are necessarily freely reduced, it follows that 'y is strongly connected.

O

The converse of lemma 2.9 is also true. In fact, we prove a statement that is
(a priori) stronger.

LEMMA 2.10. Let H be a finitely generated subgroup of a free group F, and let
I = (V,E) be the folding of H. If Ty is a strongly connected directed graph, then
H has a basis consisting of positive words.

PRrROOF. Since I'y is a strongly connected directed graph, we know by corollary
2.8, that T has a directed trail decomposition Py, Py, ..., P, such that Tg = (1, 0)
and T'; = U;;}) P; (for i =1,...n + 1) are strongly connected directed graphs.

For i =0,...,n put z; = s(P;) and y; = t(FP;). Since P; is part of a strong
directed trail decomposition, x;,y; € V;. Since I'; is strongly connected, fix s; to be
a directed trail in T'; from 1g to z;, and fix ¢; to be a directed trail in T'; from y; to
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1g. Define wp,, ws, , w, to be the words read along P;, s;, and t; respectively. For

i=1,...,n, put h; = ws, owp, owy,. Clearly each h; is a positive word. Define
By ={ho,...,hs}.
We show that By is a free basis for H: For each i = 0,...,n, fix an arbitrary

edge ¢; in P;, and define L; C E; to be the set of edges in P; excluding ¢;. Put
To = (1r,0) and T; = (V},U;;t L;), for i = 1,...n + 1. Now T; is a well-defined
subgraph of I';, and T} is spanning tree of I'y. We assume inductively that T;
is a spanning tree of I';. Then, since P; is a directed trail which attaches to T';
at precisely s(P;), t(P;), the omission of edge ¢; from L; suffices to ensure that
T;y1 = T; U L; is a spanning tree of I';;1 = I'; U P;. By induction, T},4; is a
spanning tree of I';,41 =T'H.

Since By consists precisely of the Schreier transversals of H relative to the
spanning tree T, 41 (where h; is the transversal of the non-tree edge ¢;) it follows
that By is a free basis for H. O

Combining the results of lemmas 2.9 and 2.10, we see that the existence of a
positive generating set for a subgroup H <, F' is equivalent to the existence of a
positive basis for H.

COROLLARY 2.11. Let H be a finitely generated subgroup of a free group F.
H is positively generated iff H has a basis consisting of positive words.

PROOF. <« Trivial.
= If H is generated by a set of positive words, then by lemma 2.9, 'y is strongly
connected. Then, by lemma 2.10, H has a basis consisting of positive words. O

Using lemma, 2.10 one can show that the class of positively generated subgroups
of F' extends the class of finite index subgroups of F.

COROLLARY 2.12. Let H be a finitely generated finite index subgroup of a free
group F = F(X). Then H is positively generated.

PROOF. Suppose, towards contradition, that H is not positively generated.
Then by lemma 2.10, the folding 'y = (Vir, Epr) is not strongly connected. Let
J1, ... Jm denote the equivalence classes of V' under the strong connectivity relation
SC. Define the ith strongly connected component J; to be the subgraph induced by
Ji (i =1,...,m). Let '}y be the directed labelled multigraph obtained by collapsing
each component J; to a single vertex u;. Since I'}; is necessarily a directed acyclic
graph, take u;, to be any minimal vertex (i.e. w;, has only outgoing edges). Let
(s,t) be any edge such that s € J;, and t ¢ J;,. Suppose (s,t) is labelled by
¢ € X. Since, by assumption, H is finite index, the edge (s,t) must be part of a c-
monochromatic directed cycle C in T'g. It follows that there is a c-monochromatic
directed path P = C\(s,t) from ¢ to s. But since ¢t ¢ J;, and s € J;,, it must be
that there is some edge (t',s') in P where t' ¢ J;, and s’ € J;,. This contradicts
our choice of u;, as a minimal vertex in I'};. Thus, H is positively generated. O

REMARK 2.13. Note that unlike finite index subgroups, the class of positively
generated subgroups is not closed under intersections. For example,

{aa,ba) N (ab,bb) = (ab™ ')
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3. Applications to the Hanna Neumann conjecture

In this section, we shall prove that if a subgroup H < F' is positively generated,
then for all subgroups K, the Hanna Neumann conjecture holds for the pair (H, K).
Directed trail decompositions of foldings will play a central role in the proof.

For concreteness, much of this exposition is restricted to the finitely gener-
ated subgroups of F» = F({a,b}). Suppose we are given H, a non-trivial finitely
generated subgroup of F, and its folding 'y = (Vg,Eg). (The reader who
wishes to review a standard constructive definition of I'yy may consult the proof
of lemma 2.9 on page 5, where it was outlined.) Since H <¢g Fy, 'y has ver-
tices of undirected degree < 4 (the undirected degree of a vertex is the sum of
its in-degree and out-degree). Define d = di : Vg — {1,2, 3,4} to be the func-
tion that assigns to each vertex v € Vp its undirected degree in I'y;. Now put
di(Ta) = {v € Vu| du(v) =i}, for i = 1,2,3,4. We classify vertices of degree 3
based on the labels of their incident edges, naming the 4 classes C1, Ca, Cs, and Cy;
these classes are shown in the figure below. We define C;(T'g) to be the number of
degree 3 vertices of type C; in T'g.

b b
b a
a b b
a b a
a a
C (e)] C3 Cy

DEerFINITION 3.1. A folding T is called 3-balanced if it satisfies the following
“flow conservation law”:

(3.1) Ci(T) + C3(T') = Co(T') + Cu(T)

We know by lemma 2.9 that a positive finitely generated subgroup of a free
group must have a strongly connected folding. By lemma 2.7 we see that strongly
connected foldings have strong directed trail decompositions. Now we show that
whenever a folding of a subgroup H <tz F5 has a (not necessarily strong) directed
trail decomposition, then this folding is necessarily 3-balanced.

LEMMA 3.2. If H <34 F> such that Ty = (V, E) has a directed trail decompo-
sition, then I'g is 3-balanced.

ProOOF. Suppose I'g has a directed trail decomposition Fy, ..., P,. Define as
before Tg = (1r,0) and T; = (V;, E;) = U;-;}) P; (for i =1,...n+1). Clearly, I'; 1
and P;_; are subgraphs of I';, and I'p,41 = I'gy. Since (P;), j =0,...,i—1is a
directed trail decomposition of T';, every vertex in V; (¢ > 1) has degree at least 2.

We prove the lemma by induction on n.

Base case: When n = 0, 'y = Ty = (1r, ) consists of exactly one vertex 1g.
It follows that then Vi € {1,2,3,4}, C;(T'x) = 0, and so the lemma holds trivially.

Inductive step: We will assume that the lemma holds for the folding I, _;, and
show this implies the lemma, is also true for T', =T, 1 U P, ;.

Put u = s(P,_1) and v = t(P,_1). If u,v € V,,_1, then by definition 2.4, u and
v coincide, and (as a subgraph of ') P,—1 consists only of vertices of even degree.
Thus, d3(T'y) = d3(T'—1), and in particular, for ¢ = 1,...,4, C;(T'y,) = Ci(Ty—1).
By the inductive hypothesis, the lemma holds.
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By definition 2.4 of directed trail decomposition, it only remains to consider
the case when both u,v € V,,_;. Note that all vertices in V,,\V,,—1 must be of even
degree (either 2 or 4) in T',, and so do not factor into the 3-balancedness of T',,.
For clarity, we shall denote a vertex u € V,,_1 as u™ whenever we are considering
it as a vertex in V,,. For example, we denote the degree of a vertex uw in I';, 1 as
d(u), while denoting the degree of the same vertex in '), as d(u™). Since T',,_1 is a
subgraph of T',,, it follows that {w € V,,_; | d(w™) > d(w)} = {u,v}. Let e, [resp.
ey] be the first [resp. last] edge in P, 1, and denote its label by [,, [resp. [,], where
lu,l, € {a,b}. The various edges, vertices and labels are depicted below.

F’n_1

- -

-7 N
7’

/7
/ &
lv

h :
&

u

Mm-1

The case when u = v: If u = v, then it must be that d(u) = 2 and d(u™) = 4.
So, d3(T'p) = d3(T'n—1), and in particular, for ¢ = 1,...,4, C;(Ty) = Ci(Tp—1). By
the inductive hypothesis, the lemma holds.

The case when u # v: Clearly d(vt) = d(v) + 1 and d(ut) = d(u) + 1. It
follows that d(u),d(v) € {2,3}, and d(u™),d(v") € {3,4}. We proceed now by
considering each of the possible cases.

When d(u) = 2: Since u has degree 2, and I',,_; is the union of directed trails,
u must have one incoming and one outgoing edge in I';,_1. But since I, € {a, b}, it
must be that (in T',,) 4t has 2 outgoing edges and 1 incoming edge, i.e. u™ is either
of type Cy or C5. Thus, the addition of the trail P,_; caused the degree 2 vertex
u € V,,_1 to be transformed into a degree 3 vertex u™ € V,, of type C; or type Cs.
In summary, the transition u ~ u* causes the quantity C; + C3 to increase by 1.

When d(u) = 3: Since vertex u™ has degree 4 in I, and I, € {a,b}, the
vertex u™ has one more outgoing edge than u. It follows that in I',,_;, the vertex
u had two incoming edges and one outgoing edge, i.e. u was either of type Cs or
Cy. Thus, the addition of trail P,_; caused the degree 3 vertex u € V,,_; whose
type was either Cs or Cy to be transformed into a degree 4 vertex u™ € V;,. In
summary, the transition u ~ u™ causes the quantity Cs + Cy to decrease by 1.

When d(v) = 2: Since v has degree 2, and T',,_; is the union of directed trails,
v must have one incoming and one outgoing edge in I',,_;. But since I, € {a, b}, it
must be that (in T',) v has 2 incoming edges and 1 outgoing edge, i.e. v is either
of type C3 or C4. Thus, the addition of the trail P,_; caused the degree 2 vertex
v € V,,_1 to be transformed into a degree 3 vertex vt € V,, of type C» or type Cj.
In summary, the transition v ~ v+ causes the quantity C, + Cj to increase by 1.

When d(v) = 3: Since vertex v has degree 4 in [',, and I, € {a, b}, the vertex
vT has one more incoming edge than v. It follows that in T',,_;, the vertex v had
two outgoing edges and one incoming edge, i.e. v was either of type C or type Cjs.
Thus, the addition of trail P,_; caused the degree 3 vertex v € V,,_; whose type
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was either C; or Cs to be transformed into a degree 4 vertex vt € V,,. In summary,
the transition v ~ vt causes the quantity C; + C3 to decrease by 1.
The conclusions of this analysis are summarized in the table below.

| I d(v) =2 | dv) =3 |
d(u) || v~ vT: Cy + Cy increases by 1 | v ~ vt: C; + C3 decreases by 1
=2 || u~ ut: C; + C3 increases by 1 | u ~ ut: C; + Cs increases by 1
d(u) || v~ vt: Cy + C4 increases by 1 | v ~ vt: C; + C3 decreases by 1
=3 || u ~ ut: Cy + C4 decreases by 1 | u ~ ut: Cy + Cy4 decreases by 1

The induction hypothesis C1(T'y,—1) + C3(Tn-1) = C2(Tp—1) + C4(Tp-1) to-
gether with the table above shows that C(T,) + C3(T,) = C2(Ty,) + C4(T',). By
induction on n then, the lemma holds.

O

REMARK 3.3. In [10], Walter Neumann showed that if H,K <tz F> are a
counterexample to the conjecture, then 3i € {1,2,3,4} s.t. C;(Tw) > %d3(I‘H) and
Ci(Tk) > 1ds(Tk). Clearly, if a group has a 3-balanced folding, then no more
than half of its degree 3 vertices can be of the same type. Thus, it follows from W.
Neumann’s result that if H has a 3-balanced folding, then there is no K <f, Fb
for which the pair (H, K) are a counterexample to the conjecture.

The remark that follows will be used to argue that a subsequent theorem about
subgroups of F» holds in general for the finitely generated subgroups of any free
group F.

REMARK 3.4. Take ¢,, to be the homomorphism of F,, = F({z1,...,z,}) into
F, = F({a,b}) defined by ¢, : z; — a’ba’, (i = 1,...,n). It is easy to verify
that ¢, is an embedding which takes positive words in F,, to positive words in F5.
In particular, if H <¢, F,, then rank ¢(H) = rank H, and if H has a positive
generating set, then ¢(H) has a positive generating set.

The main theorem may now be proved:

THEOREM 3.5. If H, K are two finitely generated subgroups of o free group F
and at least one of the two subgroups is generated by a set of positive words, then
the pair (H, K) satisfy the Hanna Neumann conjecture.

Proor. WLOG, let H have a positive generating set
Bu = {hla"' Jhn}

Suppose first that F' = F5. By lemma 2.9, the existence of a positive gener-
ating set implies that 'y is strongly connected. By lemma 2.7, a directed trail
decomposition of 'y exists. By lemma 3.2, I'g is 3-balanced. Finally, by remark
3.3, H cannot be part of any counterexample to the conjecture. This proves the
case when F' = Fj.

Now suppose F' # F5. Since H, K are finitely generated, WLOG, we can assume
that F' = F,, for some finite n. If H, K were a counterexample to the conjecture,
then by remark 3.4, ¢,,(H),pn(K) <tz F>, ¢pn(H) is positively generated, such
that rank H = rank ¢,,(H), rank K = rank ¢, (K), and

rank H N K = rank ¢,(H N K) = rank (¢,(H) N ¢ (K))
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Thus ¢, (H), ¢,(K) are a pair of positively generated subgroups of F, which are
a counterexample to the conjecture. This contradicts our proof for the case when
F = F5,. This proves the case when F' # F. O

3.1. Further analysis. The proof of theorem 3.5 hinges on two key ideas:
(i) foldings which have directed trail decompositions are necessarily 3-balanced,
and (ii) finitely generated subgroups of F» which have 3-balanced foldings cannot
be part of any counterexample to the conjecture. Our success in this approach
naturally leads us to inquire about necessary and sufficient conditions for a folding
to possess a directed trail decomposition. In this section, we answer this question
for finitely generated subgroups of F5.

DEFINITION 3.6. A strongly connected component J is referred to as a source
[resp. sink] if J consists of a single vertex v, where v has degree 2 in T', and v is
incident to exactly two outgoing [resp. incoming] edges. A group H <, F(X)

source sink

-—0— @

is called source/sink-free (with respect to basis X) if I'g contains neither source
nor sink vertices.

The next lemma describes a local structural property of a folding which is
equivalent to its having a directed trail decomposition.

LEMMA 3.7. Let H <p4. F> and T' = (V, E) be the folding of H. Then T’ has
no sources and no sinks if and only if I' has a directed trail decomposition.

PROOF. = Decompose I' into strongly connected components. Let jl, ey T
denote those strongly connected components whose size (number of vertices) is > 1.

Take B
Go= J 7
i=1,...,m

Since each j, is strongly connected, by lemma 2.7, each j, has a directed trail

decomposition ;. Since the J; are pairwise disjoint, it follows that Gy has a

directed trail decomposition Py—simply take Py to be Q1,...,Qmn.- We extend F

to a directed trail decomposition of T in stages. At each successive stage i (starting

at 1 =0):

(1) If E[T\E[G;] = 0, halt. Otherwise, select an edge (u,v) € E[[|\E[G;].

Starting at vertex u we walk backwards along (arbitrarily chosen) incom-

ing edges, until reach a vertex u' € V[G;]. Likewise, starting at vertex v

we walk forwards along (arbitrarily chosen) outgoing edges until we reach

a vertex v' € V[G;]. We cannot get stuck in either of these steps, be-

cause I' contains neither sources nor sinks; we cannot get trapped in a

loop before we find a vertex in V[G;] because then we have discovered a

strongly connected component that must have been omitted from the set
J1,-..Jm, a contradiction.

Define P;;1 to be the directed trail from u' ~» u — v ~ v’ described

above. Notice that P;;; attaches G; at precisely its endpoints u',v'. We

append F;;1 to the directed trail decomposition at stage ¢, obtaining a

trail decomposition of G;+1 = G; U P;11. Increment ¢, then repeat step 1.
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At the end of this procedure, we have constructed a directed trail decomposition
of T, as claimed.

< Suppose that T' = (V, E) has a directed trail decomposition P, ..., Py and
(towards contradiction) also has a source vertex vg € V. Since {FP; | i =0,...,k}
covers E[I'], let 49 € {0,1,...,k} be the least integer for which vg € V[P;,].

If vy # s(Pj,), t(Pi,) then vg is an intermediate vertex of P;, which has two out-
going edges, contradicting the fact that P;, is a directed trail. If vy € {s(P;,),t(P;,)}
then minimality of i¢ implies that

i0—1

VP In | VIPI=0

so by definition 2.4 of directed trail decomposition, the endpoints of P;, must coin-
cide. It follows that the final edge in P;, is not oriented towards ¢t(P;,), contradicting
the fact that P;, is a directed trail. Thus, no such source vertex vy exists.

A completely analogous argument shows if T' has a sink vertex, then I" cannot
have a directed trail decomposition. |

Lemma 3.7 then has the following consequence for the conjecture:

THEOREM 3.8. If H, K are two finitely generated subgroups of the free group
F> and at least one of the two subgroups is source/sink-free, then the pair (H, K)
satisfy the Hanna Neumann conjecture.

Proo¥F. If 'y has neither source nor sink vertices, then by lemma 3.7, I'y
has a directed trail decomposition. So, lemma 3.2 applies and hence I'y must be
3-balanced. Then, by remark 3.3, H cannot be part of any counterexample to the
conjecture. O

3.2. Remarks on invariants. The properties of being source/sink-free and
positively generated depend on the choice of basis for the ambient free group F.
This leads us to define the following natural basis-invariant versions of these prop-
erties:

DEFINITION 3.9. A subgroup H <z, F» = F({a,b}) is termed potentially
source/sink-free if 3¢ € Aut(F:), such that [y is source/sink-free (with re-
spect to basis {a,b}).

DEFINITION 3.10. A subgroup H <z F(X) is called potentially positive if
for some ¢ € Aut(F), ¢(H) is positively generated (with respect to basis X).

Theorems 3.5 and 3.8 then have the following corollaries:

COROLLARY 3.11. If H, K are two finitely generated subgroups of a free group
F and at least one of the two subgroups is potentially positive, then the pair (H, K)
satisfy the Hanna Neumann conjecture.

COROLLARY 3.12. If H,K are two finitely generated subgroups of the free
group F; and at least one of the two subgroups is potentially source/sink-free, then
the pair (H, K) satisfy the Hanna Neumann conjecture.
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4. Algorithms and computational complexity

In this section, we will show that it is decidable whether a finitely generated
subgroup of a free group is positively generated. Specifically, we show

THEOREM 4.1. Let X = {x1,...,zn} and F, = F(X). There exists an al-
gorithm which for any finite set of freely reduced words S = {h1,...,h,} C Fp,
determines whether H = (S) is positively generated, and if so outputs a positive
basis for H. This algorithm operates in O(m*€3logl) time, where £ = > | |hi|.
If additionally hy,ha,...,h, are known to form a Nielsen reduced set, then the
algorithm may be modified to terminate in O(€%) time.

We shall prove theorem 4.1 by describing an algorithm which operates in three
phases and achieves the stated claims. In the first phase, S is transformed into a
folding I". In the second phase, the algorithm determines if H is positively generated
by testing whether T is strongly connected. If so, then in the third phase, a positive
basis for H is computed using a directed trail decomposition of I'. Throughout the
computation, T is stored as a transition table T mapping V x X*! — 2V For each
u €V and ¢ € X, the set T'(u, c¢) is stored as a balanced binary tree (e.g. as a splay
tree [14]) so as to permit insertion and deletion of elements in O(log |T(u, c)|) time.

4.1. Phase I: Building the folding for H. In the first phase the algorithm
constructs the folding ' by applying procedure 1 listed below, which in turn makes
use of the sub-procedure FOLD.

Procedure 1 BUILD-FOLDING (hy, ha, ..., hy)

V+ {1}
E+ 90
'« (V,E)
for all hin {hy,hs,...,h,} do
Add a directed loop to T, starting and ending at 1, labelled by h;
end for
FOLD(1)
Output I’

PR HE@DNE

LEMMA 4.2. Procedure BUILD-FOLDING runs in O(m2¢3logl) time.

PRrROOF. The time required for lines 1-6 is O(¢). It remains to consider line 7.
Note that lines 3-14 of procedure FOLD collapse the vertices of T'(u,¢) to a single
vertex v; clearly no more than |V| executions of lines 3-14 may occur. During
a single execution of lines 3-14, nested loop variables w, d, and ¢ take at most
|V|, m, and |V| values, respectively. Since each element in Im(T') is a balanced
binary tree of size at most |V|, the insertion and deletion operations that need
to be performed in lines 6 and 8 require at most O(log|V'|) factor overhead. It
follows that a single execution of lines 3-14 takes O(m|V|?log |V|) time. Taking into
account the outermost loop (lines 1,16) we see the execution of line 7 in procedure
BUILD-FOLDING takes at most O(m?|V|*log|V|) = O(m?¢3log¥) time. This gives
us an upper bound on the time complexity of BUILD-FOLDING. O
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Procedure 2 FOLD(u)

1: for all ¢ in X*! do

2:  if |T'(u,c)| > 1 then

3 v < any vertex in T'(u, ¢)

4 for all w in T'(u,c)\{v} do
5: for all d in X*' do
6

7

8

9

T(v,d) + T(v,d) UT(w,d)
for all ¢ in T'(w,d) do
T(q,d ") « T(q,d ') U {v}\{w}

: end for
10: T(w,d) + 0
11: end for
12: Delete w from V
13: end for
14: T (u,c) + {v}
15: FOLD(v)
16: end if
17: end for

If the generating set S = {hy, ha,...,h,} is known to be Nielsen reduced (see
[8, pages 6-9]), then the next lemma shows that the folding can be built significantly
faster using a different procedure, BUILD-NIELSEN-FOLDING, listed below.

Procedure 3 BUILD-NIELSEN-FOLDING(hjy, ho, ..., hy)
V<« {1}
22 E+ 0
3: for all h; in {hy, ha,...,h,} do
4: Read h; in I starting at vertex 1, and thereby obtain a decomposition h; =
p; © q;, where p; is the maximal length prefix of h; which can be read in T’
starting at vertex 1. Let u; be the vertex reached after reading p;
5:  Readg; in I starting at vertex 1, and so obtain a decomposition q;1 = r;08;,
where 7; is the maximal length prefix of ¢; ! which can be read in T starting
at vertex 1. Let v; be the vertex reached after reading r;.
if u; # v; then
Add a chain (labelled by s;') connecting u; to v;. Augment V, E, and T
appropriately.
8: else
Decompose s; = t; o c¢; oty ! where ¢; is cyclically reduced. Add a spur
labelled ¢; starting at u;. At the end of this spur, attach a loop labelled ¢;.
10:  end if
11: end for
12: Qutput I’

©
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LEMMA 4.3. Procedure BUILD-NIELSEN-FOLDING runs in O(f) time.

PROOF. Since S is a Nielsen reduced set, at each iteration of lines 4-5, h; is
Nielsen reduced with respect to {h1,...,h;_1}. It follows that s; is always a non-
trivial word. If u; and v; are distinct, then we add a chain connecting wu; to v; and
label this by s; ! (line 7). If u; and v; coincide, then s; may fold into itself. This
cancellation can be predicted, however, by decomposing s; as a product t;oc;ot; !
where ¢; is cyclically reduced (line 9). The time required to perform lines 4-10 of
procedure BUILD-NIELSEN-FOLDING is O(]h;|), so the lemma follows. O

4.2. Phase II: Determining if H is positively generated. Given the
folding I" constructed in phase I, we may apply Tarjan’s algorithm [18] to determine
whether I is strongly connected. Tarjan’s algorithm is based on a modified depth-
first search (see [3]) and operates in O(|V| + |E|) time. By lemma 2.10, this is
equivalent to determining whether H is a positively generated subgroup of F,.
Since |V| + |E| is bounded above by 2¢, it follows that

LEMMA 4.4. There is an effective procedure which given the folding of a sub-
group H = ({hq,...,hn}) < Fpy, decides whether H is positively generated in O(f)
time, where £ = """ |hy|.

4.3. Phase III: Computing a positive basis for H. If in phase II we
determine that I' is a strongly connected directed graph, we proceed to compute
a positive basis for H. The proof of lemma 2.7 describes one procedure which
constructs a strong directed trail decomposition for a strongly connected graph. A
more efficient approach would be to use a modification of the standard algorithm
for computing the “open ear decomposition” of a 2-vertex connected undirected
graph (see for example [12, pages 276-286]). These algorithms run in O(|V| + | E|)
time, and can be modified to compute directed trail decompositions of strongly
connected directed graphs.

Next, we follow the procedure outlined in the proof of lemma 2.10, which
describes how to compute a positive basis for a subgroup of a free group, given
a strong directed trail decomposition Fo,..., P, for its folding: We consider the
graphs Ty = (1r,0) and T; = U;;B P; (for i = 1,...n + 1). Since I'; is strongly
connected, we can use 2 applications of breadth-first search to compute a directed
trail s; in I';, from 14 to s(F;), and a directed trail ¢; from ¢(P;) to 1g. If we denote
the words read along F;, s;, and t; as wp,,ws, , wy; respectively, then the algorithm
outputs h; = ws;, owp, o wy, for ¢ = 0,...,n. The time required is dominated by
the 2(n + 1) executions of breadth-first search used to compute the s; and ¢;. Since
each breadth-first search takes O(|V| + |E|) = O({) time, the total time required is
O(nf) which is O(£?). We have shown

LEMMA 4.5. There is an effective procedure which given the strongly connected
folding of a positively generated subgroup H = ({h1,...,h,}) < Fp, outputs a
positive basis for H in O((?) time, where £ = 1| |h;.

Theorem 4.1 now follows.

PrOOF. (Theorem 4.1) The algorithm operates in the three phases described
above. In the case where S is known to be a Nielsen reduced set, lemmas 4.3 and
4.4 show that phases I and II take O(f) time, while phase III dominates, taking
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O(£?) time by lemma 4.5. If S is not known to be Nielsen reduced then phase I
dominates, requiring O(m?¢3log /) time by lemma 4.2, while phases IT and III take
O(¥) and O(£2) time respectively. a

5. Open questions

We have seen that there are are efficient algorithms to determine whether a
subgroup H <rg. Fp, is positively generated. We ask whether there is an algorithm
to decide whether a given subgroup is potentially positive (see definition 3.10) ? In
remark 2.13, we noted that the class of positively generated subgroups of a free
group is not closed under intersections. We ask whether the class of potentially-
positive subgroups is closed under intersections?
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