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Abstract

Much of security in multi-agent systems is based on mod-
els where each agent declares limits on what other agents
are permitted to receive. Traditional systems are engineered
to operate without violating their agents’ cumulative de-
clared constraints [14, 16].

In contrast, here we consider a trust model that is suited
for use by ensembles of closely coupled agents operating in
a system supporting agent accountability using audit trails
for information flows. In such systems, an agent does not
require enforcement of absolute limits on the what other
agents receive, but instead seeks assurance that its personal
liabilities will never exceed its declared risk tolerance. In
short, each agent expects the system to behave in a man-
ner which respects its declared accountability constraints—
quantitative limits on what the agent agrees to be held ac-
countable for sending.

This paper outlines a suite of protocols with which a
multi-agent system can fulfill the cumulative accountabil-
ity constraints of its constituent agents, and avoid subject-
ing any individual agent to greater liability than its declared
risk tolerance. The protocols are shown to be efficient in a
dynamic network setting, and are analyzed under a compre-
hensive set of failure models including link delay, link fail-
ure, and limited corruption in the control and data process-
ing logic of agents.

1. Introduction

Traditionally, agent security has been approached at the
microscopic scale, as a problem of reconciling pairwise
inter-agent trust with the rendering of agent services [7, 13].
This work, in contrast, considers agent security at macro-
scopic scales, as a problem of dynamic data filtering in
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ensembles of cooperating agents [11] within a multi-agent
system.

We consider a collection of agents V , cooperating by
communicating over a dynamic network of logical connec-
tions E ⊂ V × V . Within the agent network we assume
that each datagram p is tagged with an immutable sensitivity
classification, represented by an m-vector σ̄(p) of real val-
ues [12]. We shall define a partial order on sensitivity as fol-
lows: given two m-vectors σ̄, σ̄′ in R

m, we write σ̄ 6 σ̄′ if
the corresponding ordering holds in all m coordinates of σ̄

and σ̄′. Larger sensitivity values implicitly mandate greater
restrictions on the distribution of a packet.

In multi-agent systems which provide security contracts
restricting the content of information flowing to individual
agents, one interpretation of trust might be to associate with
each agent w, the maximum sensitivity of information—
say τ1(w)—that agent w is permitted to receive [17]. How-
ever, such a model implies that there is global consensus
on τ1—clearly an unreasonable assumption for a dynamic
large-scale open multi-agent system. To support interpre-
tation of trust that permits disagreement on trust levels,
we could model trust using a pairwise function τ2, where
τ2(v, w) specifies the maximum sensitivity of information
that agent v wants agent w to ever receive. A priori, this
model appears to be more flexible, but it is easy to see
that a system that satisfies constraints of the second type
of model is equivalent to a system based on the first type
of model—where for each agent w, τ1(w) has been taken
to be min{τ2(v, w) | v ∈ V }. In the dynamic setting then,
the difference between the two models amounts to nothing
more than maintaining a distributed consensus on the val-
ues of τ1 in terms of the values τ2. In short, the expressive
power of the two trust models is equivalent—no additional
flexibility is gained by adopting a pairwise trust function τ2.

In this paper, we consider a trust model that is suited to
open multi-agent systems supporting auditing and account-
ing of information flows [1, 5, 15].



At run-time, such a system has two main responsibili-
ties:

(R1) Adhere to quantitative limits specified by each agent
on what it is willing to be held accountable for hav-
ing sent.

(R2) Maintaining information regarding the identity of
agents complicit in particular information flows.

To make aspect (R1) of the system more precise, we in-
troduce accountability-based trust, encoded in a isolated-
accountability function

τ : V × V → R
m,

where τ(v, w) specifies the maximum sensitivity of infor-
mation that agent v is willing to be accountable for having
sent to agent w. Informally, τ(v, w) represents the declared
upper bound on v’s personal risk tolerance for sending in-
formation to w. In effect, v declares that it is willing to be
held accountable for participating in the routing of infor-
mation to w, provided the information does not have a sen-
sitivity classification higher than τ(v, w).

Definition 1.1. Given an isolated-accountability function
τ , a system is said to SATISFY ACCOUNTABILITY-BASED

TRUST CONSTRAINTS if the following is true: Whenever a
packet p visits a sequence of agents w1, w2, . . . , wl, then for
all i, j where 1 6 i < j 6 l:

σ̄(p) 6 τ(wi, wj).

It is important to realize that even though a multi-agent
system may SATISFY ACCOUNTABILITY-BASED TRUST

CONSTRAINTS, agents are always free to use information
collected by aspect (R2) of the system. An agent can use
this “audit” information to subjectively decide whether “in-
appropriately sensitive” data is being transferred; the agent
can then autonomously respond to the circumstances by act-
ing on the the agents complicit in the offending information
transfer. While the underlying multi-agent system facili-
tates subjective decisions and autonomous responses on
the part of agents, the system does not provide any restric-
tions or guidelines on the decision criteria or the nature of
the responses. Indeed, the optimal decision/response cri-
teria depend strongly on the application domain, and are
beyond the scope of this paper. Our goal here is foun-
dational: we describe a suite of protocols which per-
mit a multi-agent system to satisfy accountability-based
trust constraints.

2. The Static Case

We are given a static (time-invariant) network of agents
modeled as a directed graph G = (V, E), where informa-
tion flows between agents V along the directed edges E of

G. An agent w is called a parent of agent v if there is an
edge from w to v—equivalently, v is called a child of w. The
set of all children (resp. parents) of v are denotedOv (resp.
Iv). Data arrives at an agent v from either “higher layer ap-
plications” or from one of its parents. In addition, we are
given a static (time-invariant) isolated-accountability func-
tion τ : V × V → R

m.
Initialization. Since the network is static, we will as-

sume that every agent knows the structure of G at the on-
set. From this information, an agent v can compute the set
of agents reachable through each of its children. This can
be accomplished by running the standard directed depth-
first search from each child w inOv . The results from these
depth-first search are to be stored for later reference as val-
ues of the reachability function:

Rv : Ov → 2V .

In addition, since the isolated-accountability function is
static, we will assume that every agent knows τ at the onset.
Each agent computes contextual-accountability function τ ∗

v ,
the trust that it places in each of its children within the op-
erational context of the agent network G.

τ∗
v (u) = min{τ(v, w) | w ∈ Rv(u)}.

Since depth-first search take time O(|V |+ |E|), the time
to for agent v to determine Rv is O(|Ov | ·(|V |+ |E|)). Hav-
ing computed Rv , the time required to determine τ ∗

v is at
most O(m|Ov ||V |). Thus each agent can initialize itself in
time O(m|Ov ||V |+ |Ov ||E|).

Operation. Suppose v receives a data message p with
sensitivity σ̄(p). The agent system adds v to p’s chain of
custody field: a list of agents that have processed p. Then v

sends p to each u ∈ Ov for which σ̄(p) 6 τ∗
v (u). An in-

coming packet can thus be processed in O(m|Ov |) time.
Although initially each agent knows G and τ , after initial-
ization only τ∗

v is needed, which requires at most O(m|Ov |)
space.

Analysis, Part 0. Suppose a packet p visits a sequence
of agents w1, w2, . . . , wl. Fix i and j, where 1 6 i < j 6 l.
Then wi+1 must be in Owi

, and wj must be in Rwi
(wi+1).

By its definition,

τ∗
wi

(wi+1) = min{τ(wi, z) | z ∈ Rwi
(z)}

6 τ(wi, wj).

Since the control logic of agent wi decided to send p

through wi+1, it must be that σ̄(p) 6 τ∗
wi

(wi+1). So
combining, it follows that σ̄(p) 6 τ(wi, wj). Thus,
ACCOUNTABILITY-BASED TRUST CONSTRAINTS (Defini-
tion 1.1) are satisfied.

3. Making Isolated-Accountability Dynamic

We now augment the previous description to incorporate
a more dynamic setting in which each agent v can alter the



isolated-accountability function τ at domain points of the
form (v, w) where w ∈ V . When agent v changes τ(v, w),
it alters its declared risk tolerances for being a party in rout-
ing information to w.

Clearly, in such a dynamic setting, it would be unrea-
sonable to assume that every agent knows τ all the time.
To address this, the |V | × |V | table of values encoding the
function τ are distributed column-wise across the set of
agents V . Each agent v individually maintains a subtable
τv : V → R

m where τv(w) = τ(v, w), and can mod-
ify its entries at will. In doing so, it alters its declared risk
tolerances for being a party in routing information to other
agents.

When an agent v alters τv(w), it must recompute τ∗
v ac-

cording to the following definition:

τ∗
v (u) = min{τv(z) | z ∈ Rv(u)},

for each u in Ov having the property that w ∈ Rv(u).
Thus, when agent v changes its isolated-accountability

τ(v, w) to an agent w in V , this can alter its contextual-
accountability function. Let us consider the implications of
this. Denote the previous value as τ ∗

v (u) and the new value
as τ̂∗

v (u). If τ̂∗
v (u) < τ∗

v (u), then v will be more selective
about the messages it sends to u, and agents downstream of
u may filter fewer messages or even be completely starved
of messages. If τ̂∗

v (u) > τ∗
v (u), then v will be less selective

about the messages it sends to u, and agents downstream of
u may have more filtering to do because v sends them more
messages. Note that τ̂∗

v (u) may be incomparable to τ∗
v (u),

in which case no generic statement can be made about the
selectiveness with which v filters messages.

Operation. Note that in the dynamic trust case, re-
computation of τ∗

v requires us to retain knowledge of Rv,
which is computed at initialization time. This requires
O(m|Ov ||V |) space. By using a dictionary data struc-
ture such as red-black trees, the re-computation of τ ∗

v can
be achieved in time O(m|Ov | log |V |). However, to do this,
the trees must be initialized, and the time required to com-
pute initial values τ∗

v becomes O(m|Ov ||V | log |V |).
Hence total initialization time for an agent becomes
O(m|Ov ||V | log |V |+ |Ov ||E|).

Analysis, Part 1. The system was previously shown
to operate correctly in the case of a static network
and a static isolated-accountability function. To see
that the above extensions suffice to ensure that a sys-
tem with dynamic isolated-accountability will satisfy
accountability-based trust constraints, note that for any
agent v, the contextual-accountability function τ ∗

v de-
pends only on v’s isolated-accountability τv and on the
structure of the agent network G (since the latter de-
termines the reachability function Rv for v). In partic-
ular, the contextual-accountability function τ ∗

v of one
agent does not depend on the isolated-accountability func-

tions τu of other agents u 6= v. Thus when an agent v

changes its isolated-accountability function, no agent ex-
cept v needs to update its contextual-accountability func-
tion. Since the data path forwards packets based on
comparisons between packet sensitivities and contextual-
accountabilities, the system will operate correctly provided
every agent v updates its contextual-accountability func-
tion τ∗

v immediately after it alters its isolated-accountability
function τv .

4. Making the Agent Network Dynamic

We now extend the previous system to incorporate an
even more dynamic setting in which the agent network may
change. We would like to allow an agent to request informa-
tion from additional agents (i.e. expand its set of parents),
as well as allowing it to decline receiving information (i.e.
contract its set of parents). Specifically, the system will en-
able each agent v to add and remove parents (edges of the
form (w, v) from E). It suffices to address these two op-
erations, since an agent v can then always add and remove
children (edges of the form (v, w) in E) by negotiating with
them via a separate higher-level protocol.

Initialization. Clearly, in such a dynamic setting, it
would be unreasonable to assume that every agent knows G

all the time. To address this, the edges in E are distributed
across the set of agents V . Each agent v dynamically main-
tains its incoming and outgoing edges Iv and Ov respec-
tively. Initially, we can assume that E = ∅, soOv = Iv = ∅
for all agents v, and hence initialization of τ ∗

v and Rv can
be achieved trivially in O(1) time for each agent.

Operation. The protocol in the dynamic-links case is
significantly more complicated. New links can introduce
new sets of reachable agents; severed links can make the set
of reachable agents smaller. Thus τ ∗

v and Rv must be main-
tained dynamically. In order to handle this dynamism the
system separates the control path from the data path. The
control path is strictly for messages about the structure of
the network, and the control logic responds to events and
messages that describe changes therein. The data path con-
tinues to behave as described in the previous sections, pass-
ing or filtering messages according to the accountability-
based trust constraints.

In the next sections, we will describe the control path
protocols in detail. Here we give a very brief summary.
When a link (w, v) is added to the network, ADD messages
on the control path allow each new agent that can reach v

to incrementally adjust its reachability function and recom-
pute its contextual-accountability function. An ADD mes-
sage bearing the change flows upward in the agent network
(i.e. from children to parents) starting at v. When an agent
receives an ADD message from a child, it determines the
impact on its reachability function, sends ADD messages



to each parent if needed, waits for acknowledgments from
each parent, and then sends an acknowledgment to the child
who provided the ADD message. When a link (w, v) is re-
moved from the network, DEL messages flow upward in the
agent network, starting at w, allowing each agent that can no
longer reach v to incrementally adjust its reachability func-
tion and recompute its contextual-accountability function.

4.1. Adding Links

4.1.1. Link Up Events. The LINKUP event self-
generated by agents that wish to extend their set of par-
ents. A LINKUP(w) event at agent v indicates that v wishes
to be a child of w. When such an event occurs v must in-
form w about all agents reachable through it. This set is
called the reachable set of v, and is given by

Dv =
⋃

u∈Ov

Rv(u) ∪ {v}.

Because the addition of links takes time (requiring the
operation of a network-wide protocol), we must be prepared
for several link additions to be occurring in parallel. To ac-
commodate this asynchronous behavior, we use transaction
identifiers to tag each link addition. The set of transaction
identifiers that identify ongoing transactions at v is denoted
Tv ⊆ V × N.

The agent’s actions upon receipt of a LINKUP event are
then precisely as follows:

::::::::::::

LINKUP(w)
::

at
::

v:

Obtain a new transaction number, n ∈ N

Create a new transaction identifier, t← (v, n)
Tv ← Tv ∪ {t}
Send ADD(Dv, t, 1) to w

Algorithm 1: LINKUP actions

4.1.2. ADD Messages. The ADD message contains infor-
mation about a change in the reachable set of an agent. The
arrival of ADD(∆D, t, k) message at agent v from agent
w signifies that ∆D ⊆ V is a set of new agents that are
now reachable via v because of some LINKUP event (iden-
tified by t = (w0, n0) ∈ V × N that took place at the agent
w0 which is k network hops away from v.

Agent v determines the change in its own reachable set,
∆D \Dv. If there is no change (or if v has already seen an
ADD message with transaction identifier t) then v sends an
acknowledgment to w. If, however, there is a change in v’s
reachable set, v sends an ADD(∆D \Dv, t, k +1) message
to each of its parents. Because the protocol is asynchronous,
state information must be maintained for forwarded ADD
messages until all of them have been fully acknowledged.
At each agent, the additional state information includes:

• The child agent which sent agent v an ADD message
containing a transaction identifier t is given by Fv(t),
and is stored in the map Fv : Tv → Ov.

• The parent agents to which agent v has forwarded
ADD messages containing a transaction identifier t,
and that are still unacknowledged, is given by Gv(t),
and is stored in the map Gv : Tv → 2Iv .

• The set of agents specified in an ADD message with a
transaction identifier t received by agent v, is given by
D(t), and is stored in the map the map D : Tv → 2V .

The actions upon receipt of an ADD message are then as
follows:

::::::::::::::

ADD(∆D, t, k)
::

at
::

v,
::::::

from
::

w:

X ← ∆D \Dv

if X 6= ∅ then
if t 6∈ Tv then

Tv ← Tv ∪ {t}
Fv(t)← w

D(t)← ∆D

Gv(t)← Iv

Send ADD(X, t, k + 1) to every agent z ∈ Iv

else
//redundant case
Rv(w)← Rv(w) ∪∆D

τ∗
v (w) ← min{τv(u) | u ∈ Rv(w)}

Dv ← Dv ∪∆D

Send ACK(t, k − 1) to w
end

else
//useless case
Send ACK(t, k − 1) to w

end

Algorithm 2: ADD actions

Analysis, Part 2. An ADD message propagates upward
in the network G until it is found to carry information that
is either redundant (because it has a transaction identifier
that has already been seen) or useless (it describes a vac-
uous change in reachable set). At this point the particular
branch of the ADD terminates, an ACK message is gener-
ated back towards the source of the ADD.

4.1.3. ACK Messages. The arrival of message ACK(t, k)
at agent v from agent w indicates that w has received and
processed a prior ADD message sent by v to w. The value
of k is always the distance (in hops) between v and the orig-
inator of t.

When k = 0, v is the originator of t and a child of w, so
v adds w to Iv . When k > 1, agent v sends ACK(t, k − 1)
to Fv(t), the child that sent the initial ADD( , t, ) message.



:::::::::

ACK(t, k)
:::

at
::

v,
:::::

from
:::

w:

Gv(t)← Gv(t) \ {w}
if Gv(t) = ∅ then

if k = 0 then
Iv ← Iv ∪ {w}

else
if k > 1 then

if k = 1 then
Ov ← Ov ∪ {Fv(t)}
Rv(Fv(t))← ∅

end
Rv(Fv(t))← Rv(Fv(t)) ∪D(t)
τ∗
v (Fv(t))← min{τv(u) | u ∈ Rv(Fv(t))}

Dv ← Dv ∪D(t)
Send ACK(t, k − 1) to Fv(t)

end
end
Tv ← Tv \ {t}

end

Algorithm 3: ACK actions

Analysis, Part 3. An ACK message propagates down-
ward in the network (i.e. from parent towards children), un-
til it reaches the source of the initial ADD, situated at an
agent which experienced a LINKUP event. If a LINKUP(v)
is experienced at agent w then the only agents affected are
those agents u having v in their reachable set Du. By the
earlier Part 2 of the analysis, all of these agents see ADD
messages, and ACK messages are generated at the terminal
points of the ADD message propagation tree. When agent u

forwards an ACK message it certifies that its Ru, Du, and
τ∗
u functions have been suitably adjusted. Moreover, ACK

messages are not forwarded until ACKs have been received
from all parents. Since w does not get added to Ov until
v has received ACKs from all its parents, it follows that w

does not get added toOv until every agent u affected by link
(v, w), has adjusted its contextual accountability function
τ∗
u suitably. It follows that no data can traverse (v, w) un-

til the system can guarantee that accountability-based trust
constraints will be satisfied.

4.2. Directed Cycles

The protocol is robust in the presence of cycles. Figure
1 shows a logical network in which v is a child of x, w is
a child of v, and x is a child of w. Agent y joins as a child
of v. Agent v sends ADD({y}, t) to x. Agent y is not in Dx

and x has not seen t before, so x sends ADD({y}, t) to w.
Agent y is not in Dw and w has not seen t before, so w

sends ADD({y}, t) to w. Agent y changes Dw because w

is waiting for an ACK(t) from x but v has seen t before, so
it adds y to Rv(w), adjusts the contextual-accountability of
w, and sends ACK(t) to w, preventing the infinite loop. The

ACK follows the links back from w to x to v. Agent v pro-
ceeds according to algorithm 3, adding y to its reachable set
and sending ACK(t, 0) to y, completing the admission of y

as a child of v.

x

y

A
D

D
(y,t)ACK(t)

w v

Figure 1. Propagation of ADDs and ACKs in a di-
rected cycle.

4.3. Deleting Links

4.3.1. Link Down Events. The LINKDOWN event is
self-generated by agents that wish to contract their set
of parents. A LINKDOWN(w) event at agent v indi-
cates that v wishes to be a child of of w no longer. When
such an event occurs v must inform w about the agents
reachable through v, so that w (and agents further up-
stream) can adjust their reachable sets and reachability
functions appropriately.

The agent’s actions upon receipt of a LINKDOWN event
are then precisely as follows:

::::::::::::::::

LINKDOWN(w)
::

at
::

v:

Send DEL(Dv, 1) to w

Remove w from Iv

Algorithm 4: LINKDOWN actions

4.3.2. DEL Messages The DEL message contains infor-
mation about a change in the reachable set of an agent. The
arrival of DEL(∆D,k) message at agent v from agent w sig-
nifies that ∆D ⊆ V is a set of agents that are now no longer
reachable via v because of some LINKDOWN event that
occurred k hops away in the agent network. In response to a
DEL message, agent v must adjust its reachability function
by removing the agents specified in ∆D from the Rv(w),
and inform its parents about any changes in v’s reachable
set.



The agent’s actions upon receipt of a DEL message are
then precisely as follows:

:::::::::::

DEL(∆D,k)
:::

at
::

v,
:::::

from
:::

w:

X ← ∆D \
⋃

u∈Ov

u6=w

Rv(u) ∪ {v}

if X 6= ∅ then
Send DEL(X , k + 1) to every agent z ∈ Iv

end
if k = 1 then
Ov ← Ov\w
X ← ∆D \

⋃

u∈Ov

u6=w

Rv(u) ∪ {v}

else
Rv(w)← Rv(w) \∆D

τ∗
v (w)← min{τv(u) | u ∈ Rv(u)}

Dv ← {v} ∪
⋃

u∈Ov
Rv(u)

end

Algorithm 5: DEL actions

Analysis, Part 4. A DEL message propagates upward
in the network G until it is found to carry information that
is useless (concerns a vacuous change in reachable set). At
this point the particular branch of DEL message propaga-
tion terminates. As a DEL message propagates through an
agent v, the functions Rv , τv , Dv are suitably adjusted so
that accountability-based trust constraints will be satisfied.

4.4. Making the Agent Network Open

In the previous section we extended the system to sup-
port dynamic links in the agent network. From this point
it is straightforward to extend to the case where the set of
agents is dynamic. We simply make our agents lenient about
the assertion that Tv ⊂ V × N, and in doing so, agents no
longer need to know the membership of V .

5. Adding Fault Tolerance

We will consider several classes of failures and attempt
to make the control-path protocols robust in the presence
of faults. First, we shall consider fail-stop crashes of agents
and total link failures. For these types of faults, we will use
timers to make the control path robust. Then we shall con-
sider more subtle types of failures, namely the corruption of
agent data path logic and control path logic.

5.1. Agent and Link Failures

We augment algorithms 2 and 3 to make them support
fault tolerance in the presence of fail-stop crashes of agents
and total link failures. Additional state is required at each
agent, including:

• The set of agents specified in the ADD message with
transaction identifier t that was sent to all parents is
given by Sv(t), and is stored in the map Sv : Tv → 2V .

Under fault conditions, when an agent forwards ADDs
to all its parents, it may never receive all the correspond-
ing ACKs. This situation can be detected by starting a timer
for each ADD message that the agent processes (see algo-
rithms 6 and 7).

:::::::::::::::

LINKUP-FT(w)
::

at
:::

v:

. . .

Send ADD(Dv, t, 1) to w

//fault tolerance
Sv(t)← Dv

Start timer(t)
. . .

Algorithm 6: LINKUP actions modified for fault tolerance

:::::::::::::::::

ADD-FT(∆D, t, k)
:::

at
::

v,
:::::

from
:::

w:

. . .

Send ADD(X, t, k + 1) to every agent z ∈ Iv

//fault tolerance
Sv(t)← X

Start timer(t)
. . .

Algorithm 7: ADD actions modified for fault tolerance

A timeout occurs at agent v if all ACKs are not received
by the timer’s expiration. This indicates that some ances-
tor is taking too long to acknowledge an ADD message or
that there is long delay or failure on an upstream link. The
protocol recovers (See algorithm 8) by sending a DEL mes-
sage to each parent (Iv) to remove the agents of the corre-
sponding ADD(Sv(t)) and by forgetting about t.

The agent’s actions upon receipt of a TIMEOUT event
are then precisely as follows:

:::::::::::::

TIMEOUT(t)
::

at
::

v

Send DEL(Sv(t)) to every agent z ∈ Iv

Tv ← Tv \ {t}

Algorithm 8: TIMEOUT actions

Because ACKs may be on their way and cross paths
with the DEL messages being used to undo the ADD, the
ACK handling algorithm must be prepared to ignore late ac-
knowledgments (see algorithm 9). Removing t from Tv in
algorithm 8 prevents the protocol from being fooled by such
phantom ACKs.



:::::::::::::

ACK-FT(t, k)
::

at
::

v,
:::::

from
:::

w:

//fault tolerance
if t ∈ Tv then

. . .

if Gv(t) = ∅ then
//fault tolerance
Stop timer(t)
. . .

end
end

Algorithm 9: ACK actions modified for fault tolerance

5.1.1. Phantom ACK. Figure 2 (diagrams 1-5) illustrate
the interesting phantom ACK problem. They show how the
protocol is robust when two slow links delay the delivery of
ADD and ACK messages.

In diagram 1, w becomes a child of v. Agent v sends
ADD({w}, t) to its parents using the slow link on the left
of the figure and the fast link on the right. The ADD on the
fast link arrives at x and x sends ADD({w}, t) to its par-
ent on another slow link. In diagram 2, x times out wait-
ing for the reply from its parent and sends DEL({w}) to the
parent. It does not know that there is an ACK(t) in transit
from one of its ancestors. In diagram 3, the ADD({w}, t) ar-
rives at x on the slow link. Agent x treats it as a new trans-
action because it does not remember t. Agent x sends the
ADD to its parent on the other slow link. The ACK(t) from
its ancestor is still in transit. In diagram 4, the ACK(t) ar-
rives at x. Agent x believes that its ADD succeeded, adjusts
the contextual-accountabilityof the link, and sends the ACK
along. There is no way for x to know that the ACK is for the
ADD that timed out because both ADD messages are part
of the same transaction and thus carry the same t. Eventu-
ally, the ACK arrives at v. The second ACK that v expects
will never arrive, so v will time out and send DEL({w})
on both the slow and the fast links as shown in diagram 5.
Agent w will time out and detach itself from v.

5.2. Agent Corruption

We consider first the effect of corruption of data path
logic. Such corruption results in either feast or famine con-
ditions. Feast conditions are said to exist if agent v sends a
message p to some u ∈ Ov when σ̄(p) > τ∗

v (u). In doing
so, agent v acts in violation of its own risk tolerance, mak-
ing itself vulnerable to liabilities which exceed its isolated-
accountability function. It follows that there is no incentive
for an agent to corrupt its data path logic on its own initia-
tive to induce feast conditions. Under famine conditions, v

does not send p to some u ∈ Ov for which σ̄(p) 6 τ∗
v (u).

In this case, agent v starves agents downstream of u, but
this gives rise to a performance issue rather than a viola-
tion of the accountability-based trust constraints.
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Figure 2. The phantom ACK phenomenon.

We now turn to corruption of agent control path logic.
In this exposition, we divide these consequences into three
broad classes: artificially low contextual-accountability, de-
nial of service, and hidden agents. Of these, only the hidden
agents phenomenon results in a violation of accountability-
based trust constraints.

5.2.1. Artificially low contextual-accountability refers
to the situation when agents are being overly conserva-
tive, transmitting information that is less sensitive than it
could be. Artificially low contextual-accountability is prin-
cipally a performance issue, because although contextual-
accountability may be low, the accountability-based trust
constraints of Definition 1.1 are still satisfied. That is, no
agent is being subjected to greater liability than its risk tol-



erance as indicated by its isolated-accountability function.
Contextual-accountability may become artificially low

when an agent v:

1. Sends an ADD message with a ∆D that contains
u 6∈ Dv to an ancestor w whose Dw does not con-
tain contain u. Consider v with no children attempting
to become a child of w. Agent v sends ADD({v, u}) to
w. If w has no other routes to u, then {v, u} changes
Dw and w sets the contextual-accountability of v to
min(τw(v), τw(u)). Contextual-accountability will be
artificially low if τw(u) < τw(v).

2. Fails to send a DEL message in response to a TIME-
OUT event. Suppose v is a child of w and u desires
to be a child of v. v sends ADD({u}) to w and w

takes a long time to respond. If v times out and does
not send DEL({u}) to w, then should w ever receive
the ADD message, it will include τw(u) in its calcula-
tion of the contextual-accountability of v. Contextual-
accountability will be artificially low if τw(u) is less
than all of the other contextual-accountabilities along
the path from w to v.

3. Incorrectly omits agents from ∆D in a DEL mes-
sage. This could be because the agent ignores a
LINKDOWN event (equivalent to sending DEL({}) to
its parents) or if the agent simply removes some agents
or incorrectly calculates the set membership. Sup-
pose there are four agents v, w, x, and y and that they
are connected in a graph with edges (y, x), (x, w),
and (w, v). If w sends DEL({w, v}) to x but x sends
DEL({w}) to y, then y will include τy(v) in its calcu-
lation of the contextual-accountability x, setting it too
low if τy(v) is the smallest.

5.2.2. Denial of Service in the context of the accountabil-
ity protocol means that an agent is not granted admission
onto one or more paths in the agent network. Denial of ser-
vice occurs when an agent

1. Ignores LINKUP events, or

2. Ignores ADD messages.

When an agent ignores LINKUP events, it denies itself
the opportunity to join the agent network and participate in
the accountability protocol. When an agent ignores ADD
messages, it denies service to descendants. Neither phe-
nomenon results in a violation of the accountability-based
trust constraints.

5.2.3. Hidden Agents is a phenomenon which oc-
curs when some agent exists in the network without the
knowledge of all agents that should know about it. Hid-
den agents can make the contextual-accountability func-
tions artificially high. All of the following hidden agent
examples refer to Figure 3.

vw

y

x

Figure 3. A network with hidden agents.

An agent v can become hidden if:

1. v is incorrectly omitted from ∆D in an ADD mes-
sage. Suppose that agent x with children w and v de-
sires to join agent y. Agent x sends ADD({x, w}) to
y, who has no idea that x is not telling the whole truth.
Now v is hidden from y.

2. v is incorrectly included in ∆D in a DEL message.
Suppose that x is a child of y and that x has chil-
dren w and v which are known to y. Agent x sends
DEL({w, v}) to y but does not drop the link (x, v).
Agent y has no way to know that x did not fulfill its
commitment. Agent v is now hidden from y.

3. another agent sends an ACK instead of forwarding
an ADD message. Suppose that x is a child of y and
that x has one child, w, which is known to y. Agent v

desires to be a child of x and sends it ADD({v}). Since
this would change x’s reachable set, x is supposed to
forward the ADD to y. If x instead sends an ACK to v,
then v becomes a child of x without the knowledge of
y. Thus, v is hidden from y.

Since the admission of a new agent to the network can re-
quire lowering the contextual-accountability functions, hid-
den agents compromise the data path by permitting the
transmission of data that is more sensitive than agent risk
tolerances permit. There is no way for upstream agents to
learn of the compromise.

6. Conclusion

In this paper, we introduced an accountability-based trust
model, and defined the criteria for a system to satisfy a
set of constraints within this model. We showed that there



is a procedure to for agents to adjust their contextual-
accountabilities, even in the presence of dynamic local-
accountabilities and a dynamic agent network topology. Fi-
nally, we augmented the protocols to withstand fail-stop
crashes of agents and total failures of links. We gave a syn-
opsis of possible phenomena that can occur in situations of
agent corruption.

Our present software development efforts [8, 9, 10] ex-
tend earlier initiatives seeking to harness mobile agents
for network management [3, 4, 6] and general information
management [2]. In our mobile agent framework, we in-
crementally construct networks of agents by dragging them
from a palette onto a canvas and connecting agents together
into a directed graph. We want the agents to decide the sen-
sitivity level of information that flows from producers to
consumers and we want them to adjust their contextual-
accountability functions so that the system as a whole sat-
isfies accountability-based trust constraints. The protocols
described here have been successfully used in the context
of our software.
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