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1 Introduction

A measurement is a quantitative description of the transformation required to
carry one state to another state. For example, measuring the position of an ob-
ject involves determining what translation and rotations that will move the axes
at the origin to the object’s present configuration. In an ideal world, making a
measurement between two states u and v yields precisely one transformation.
In such a setting, information can be easily consolidated: a measurement from
u to v can be composed with a measurement from v to w—all that is needed is
vector algebra. In the real world, however, errors and limitations in the sensi-
tivities of the measurement apparatus make it impossible to precisely determine
the transformation that will carry u to v. At best, we can determine a small
set of candidates transformations, and assert that one of these carries u to v.
We accept that the size of this set of candidates will never be 1, or equivalently
the “uncertainty” in our measurement will never be zero. In this situation,
naive vector algebra does not suffice to allow us to compose measurements. The
process by which we consolidate information from several measurements poses
a difficult computational problem. We will describe and address several aspects
of the problem in this paper.

The principal applications of these results lie in automated consolidation of
information derived from sensor measurements in robot planning [5] and in
automated registration in augmented reality systems [4]. In recent years, many
approaches to this research area have shied away from analytic solutions, and
favored the use of Bayesian networks [1, 3] and other statistical schemes [6, 2]
to consolidate measurements and minimize uncertainty in robot planning. One
notable exception is the work of Rajan and Taylor which provided closed form
solutions [7] in low-dimensional settings.
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2 Polytopal Error Model

The states we consider are those of rigid objects in d-dimensional space, repre-
sented by their position and orientation. We are considering state space so d
may be quite large (and in particular, bigger than 3). For example, we might
take d = 5 to consist of the three spatial coordinates, the temperature, and the
luminosity of an object. The abstract notion of the object’s orientation repre-
sents a privileged direction, for instance, the gradient vector along which the
object is most likely to move in its state space.

Within such a model, position is specified as a d-dimensional vector p quantifying
the object’s offset from the origin, and orientation is represented by a orthogonal
determinant +1 matrix R. Since SO(d) is a real compact Lie group of dimension

k(d)
def
= d(d−1)

2 , the state of a rigid d-dimensional object can be encoded as a

vector u in Xd
def
= Rd+k(d).

Next, we specify the types of transformations we shall consider. A transforma-
tion on Xd is an ordered pair T = (p,R) where p is a translation and R is a
rotation (in Rd). Note that since p can be specified using a d-dimensional vec-
tor, and R is an orthogonal matrix from SO(d), it follows that a transformation
(p, R) can also be represented as a vector in Xd.

Given states u, v in Xd, a transformation (p∗uv, R∗uv) is said to carry u to v if

p∗uv + R∗uvu = v.

Because our measurement apparatus is error-prone and has a limited sensitivity,
it is impossible to determine an exact transformation (p∗uv, R∗uv) which will carry
u to v. We represent a measurement from u to v as an ordered pair

((p0
uv, R0

uv), Euv)

where (p0
uv, R0

uv) is a nominal transformation and Euv ⊂ Xd is a set of per-
turbative transformations. To make the measurement is to assert that there
exists some perturbative transformation in Euv, which when composed with the
nominal transformation (p0

uv, R0
uv), carries u to v.

In this paper, we consider a model of uncertainty where the set of perturbative
transformations Euv is a polytopal subset of Xd, specified by a set of linear
inequalities. Thus we follow the uncertainty model postulated by Rajan and
Taylor in [7] in favor of other candidates, e.g. ellipsoidal models, probabilistic
models [3], etc.
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Given a vector σ = (ε0, · · · , εd−1, α0, . . . , αk(d)−1)T in Euv, we interpret σ as
encoding the perturbative transformation (pσ, I + Rσ), where

pσ
def
=




ε0
...

εd−1




and

Rσ
def
=

0
BBBBBBBB@

0 −α0 −α1 · · ·
α0 0 −α2 · · ·
α1 α2 0

...
...

...
... 0 −αk(n)−2

0 −αk(n)−1

· · · αk(n)−2 αk(n)−1 0

1
CCCCCCCCA

.

Formally then, ((p0
uv, R0

uv), Euv) is called a measurement from u to v if

v = p0
uv + R0

uv(pσuv + (I + Rσuv )u)
= p0

uv + R0
uvpσuv + R0

uvu + R0
uvRσuvu (1)

for some σuv ∈ Euv.

3 Results

Consider the composition of two measurements in the afforementioned model,
the first carrying u to v, and the second carrying v to w. Although each indi-
vidual measurement has an associated polytopal set of perturbative transforma-
tions, the composition of two measurements exhibits higher order (quadratic)
surfaces. In general, long sequences of compositions lead to even higher order
objects which are difficult to manipulate analytically. It is therefore crucial
to devise a good polytopal approximation of the set of perturbative transfor-
mations of a composite measurement. A similar problem also arises when we
consider the inverse of a measurement, as this is also, generally not be a (linear)
polytope. The principal contribution of this paper is the derivation of polytopal
approximations for the composition and inversion of measurements under the
polytopal bounded model of error. Rajan and Taylor [7] provided analogous solu-
tions for the restricted case when d = 3. In this paper, more general techniques
are developed to extend their results to arbitrary dimensions. In providing such
approximations, we close the class of all d-dimensional measurements under the
operation of composition and inversion.
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3.1 Composition of Measurements

Let ((p0
uv, R0

uv), Euv) be a measurement from u to v, and ((p0
vw, R0

vw), Evw) be
a measurement from v to w. Then the formal definition of measurement implies
that there exist σuv ∈ Euv and σvw ∈ Evw such that

w = p0
vw + R0

vw(pσvw
+ (I + Rσvw

)(p0
uv + R0

uvpσuv
+ R0

uvu + R0
uvRσuv

u))
= p0

vw + R0
vwpσvw +

R0
vwp0

uv + R0
vwR0

uvpσuv
+ R0

vwR0
uvu + R0

vwR0
uvRσuv

u +
R0

vwRσvw
p0

uv + R0
vwRσvw

R0
uvu +

R0
vwRσvwR0

uvpσuv + R0
vwRσvwR0

uvRσuvu.

The last two terms are second-order, and may be considered infinitesimal if the
perturbative transformations are small relative to the nominal transformation.
Using this fact and rearranging terms, we see that

w ≈ p0
vw + R0

vwp0
uv +

R0
vwR0

uvpσuv + R0
vwpσvw + R0

vwRσvwp0
uv +

R0
vwR0

uvu +
R0

vwR0
uvRσuvu + R0

vwRσvwR0
uvu.

Now suppose ((p0
uw, R0

uw), Euw) is a measurement from u to w. Then

w = p0
uw + R0

uwpσuw + R0
uwu + R0

uwRσuwu.

But if ((p0
uw, R0

uw), Euw) approximates the composition of our two measurements
((p0

uv, R0
uv), Euv) and ((p0

vw, R0
vw), Evw), then it must be that

p0
uw = p0

vw + R0
vwp0

uv (2)
R0

uwpσuw = R0
vwR0

uvpσuv + R0
vwpσvw + R0

vwRσvwp0
uv (3)

R0
uwu = R0

vwR0
uvu (4)

R0
uwRσuwu = R0

vwR0
uvRσuvu + R0

vwRσvwR0
uvu (5)

Assuming u 6= 0, equation (4) above implies

R0
uw = R0

vwR0
uv (6)

and so (3) and (5) reduce (respectively) to

pσuw = pσuv + (R0
uv)−1pσvw + (R0

uv)−1Rσvwp0
uv. (7)

Rσuw = Rσuv + (R0
uv)−1RσvwR0

uv (8)

Expressions (2) and (6) indicate how to construct the nominal transformation of
the composite measurement from the nominal transformations of the constituent
measurements. Expressions (7) and (8) indicate how to reconstruct σuw as a
linear function of σuv and σvw, showing that we have successfully approximated
the set of perturbative transformations in the composite measurement by a
(linear) polytope.
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3.2 Inversion of Measurements

Starting with equation (1) and rearranging, we get

(I + Rσuv
)−1(R0

uv)−1
[
v − p0

uv −R0
uvpσuv

]
= u. (9)

Since (I + Rσuv ) is orthogonal, (I + Rσuv )−1 = I −Rσuv . It follows that

u = (I −Rσuv
)(R0

uv)−1
[
v − p0

uv −R0
uvpσuv

]

= −(R0
uv)−1p0

uv

−(R0
uv)−1R0

uvpσuv
+ Rσuv

(R0
uv)−1p0

uv

+(R0
uv)−1v

−Rσuv
(R0

uv)−1v

+Rσuv
(R0

uv)−1R0
uvpσuv

.

The last term is second-order and may be considered infinitesimal if the pertur-
bative transformations are small relative to the nominal transformation. Now
suppose ((p0

vu, R0
vu), Evu) in a measurement from v to u. Then

u = p0
vu + R0

vupσvu + R0
vuv + R0

vuRσvuv.

But if ((p0
vu, R0

vu), Evu) approximates the inverse of ((p0
uv, R0

uv), Euv), then it
must be that

p0
vu = −(R0

uv)−1p0
uv (10)

R0
vupσvu = −(R0

uv)−1R0
uvpσuv + Rσuv (R0

uv)−1p0
uv (11)

R0
vuv = (R0

uv)−1v (12)
R0

vuRσvuv = −Rσuv (R0
uv)−1v. (13)

Assuming v 6= 0, equation (12) above implies

R0
vu = (R0

uv)−1 (14)

and so (11) and (13) reduce to

pσvu = −R0
uv(R0

uv)−1R0
uvpσuv + R0

uvRσuv (R0
uv)−1p0

uv (15)
Rσvu = −R0

uvRσuv (R0
uv)−1. (16)

Expressions (10) and (14) indicate how to construct the nominal transformation
of the inverse measurement from the nominal transformations of the original
measurement. Expressions (15) and (16) indicate how to reconstruct σvu as
a linear function of σuv, showing that we have successfully approximated the
set of perturbative transformations in the inverse measurement by a (linear)
polytope.
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4 Conclusion and Future Work

In this paper, we derived linear approximations for composition and inversion of
measurements in spaces of arbitrary dimension. By doing so, we close the class of
d-dimensional measurements in the polytopal error model under the operations
of composition and inversion. The derivation of these closed form expressions
opens the door to many applications in automated consolidation of information
derived from sensor measurements in robot planning as well as in automated
registration in augmented reality systems. In future, we intend to investigate
applications of these results in the design of proactive measurement and sensing
strategies which seek to minimize uncertainty in robot motion planning.
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