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Abstract—In this paper, we propose a non-commutative key- temporary secret in the form of an auxiliary random integer

exchange scheme which generalizes the classical EIGamal Cipherand encrypts a plaintext as

to polycyclic groups. We describe the criteria for groups which

would provide good candidates for such cryptosystems, we also -

examine the complexity of the decision problems related to these X = (z-c") mod p.

key exchange.
Along with this encrypted messag&, Alice includes the
header b”. Note that for encryption Alice needs to know
only (b, ¢, p) i.e. Bob’s public key. Alice chooses the random

|. INTRODUCTION temporary secret, but does not require the discrete logarithm

¢, which remains Bob’s secret.

The ElGamal algorithm [7] is an asymmetric encryption al-
gorithm for public key cryptography, based on Diffie-Hellman Bob performsdecryptionby first manipulating the header
[5] key agreement. EIGamal is semantically secure [10] under
reasonable assumptions, and is probabilistic [11] in the sense b)Y =" = (bY)" = ¢ mod p.
that a single plaintext can encrypt to many possible ciphertexts.
The ElGamal algorithm is widely used in the free GN\&incep is prime,c” has a computable multiplicative inverse
Privacy Guard software, recent versions of PGP, and severalz,. It follows that the original message can be recovered
other cryptosystems by noting that

X-()t=z-¢-(c")"! =2 mod p.
A. Classical EIGamal ) ) )
Note that decryption requires knowledge of the discrete loga-

. i rithm ¢ but not the random temporary secret
The original EIGamal encryption scheme operates as fol-

lows. Suppose Alice and Bob wish to _cgmmunlcate OVel 8 1he EiGamal cipher leverages the purported difficulty of
network in a manner secure from malicious eavesdroppers

First, Bob fixes a large prime (sayp > 10139, a primitive computing thediscrete logarithmthat is givend, ¢ andp in

root b mod p (meaning that any € Z, may be expressed
asy = b' mod p for somel), and an integer: in the range
1 < ¢ < p. The primitivity of b implies that there is somé
for which b* = ¢ mod p. Bob’s private key is taken to bé
while his public key is the tupléb, c, p).

b* = ¢ mod p,

it is computationally infeasible to determine There is little
connection between discrete logarithms and logarithma.in
The discrete logarithm can be attacked in one of two ways,
one can take the in&e approach using trial and error, but
if p is very large this method is highly inefficient. To avoid
specialized logarithm computation attacks that are effective in
rtain cases, Bob must chogssuch thap —1 does not have
too many” small prime factors [8]. To date no efficient way of
computing discrete logarithms has been found. The best fully
+ University of St Andrews, St Andrews, Fife, KY 16 9SS, Scotland, ukProved algorithm for solving this problem is the Index-calculus
+ ITT Industries, Advanced Engineering & Sciences, at the Center fadgorithm [9], which has time complexitg)(ev™!°9") where
B e s o i oo ot o WS the bitsize of the modulup. Ifthe ciscrete logaritm
1The Digital Signature Algorithm is a variant of the ElGansignature problem could be solved efficiently, then ElGamal would be
scheme, and should not be confused with the EIGamal algorithm. broken.

Alice performsencryptionby segmenting the plaintext
and encoding it as a sequence of integers in the rénge
x < p. Since each integer is treated independently, and
we assume (without loss of generality) thatconsists of .
precisely one integer in the intervél), p). Alice chooses a



B. Key Exchange with EIGamal with Diffie-Hellman and ElGamal, it uses non-commutative
groups such as braid groups [2].

Unlike the original Diffie-Hellman protocol, ElGamal is
intended to encrypt messages, not merely to communicate' | - OLITME
session keys. However, because of the computational expef&iica scheme. Let: be a (not necessarily finite) group
of asymmetric encryption, hybrid encryption strategies at¥th generatorSgl,gQ,~--gl.lleen a,b € G, we define the
often used. EIGamal can be used for key exchange, simply §gjugateof a by b to beb™"ab and write it asa . I1|keW|se,
encrypting a short key to be used in a symmetric-key ciphdf€ define thecommutatorof a andb to bea "5~ "ab, and

The (much longer) intended messages are then encrypted nféie it as[a,b]. A subsetX C G is called asubgroupifitis
efficiently using the symmetric-key cipher. closed under multiplication and inverses, and the relationship

betweenX and G is then denotedX < G. The groupG is
said to have aolvable word problenif there is a uniform
algorithm which, given any element frotd (represented as a

C. Prior Commutative Generalizations of EIGamal product of its generatorg;) determines whether the element
is equal to the identity element i@.

o he following terminology is required to describe the Arith-

The ElGamal cipher is typically described in the setting of
the multiplicative grougZ,,, for prime integerp. However, it
can be readily generalized to work in any finite cyclic grou

The Arithmetica scheme is based on the following obser-
ation: Let S andT" be two finitely generated subgroups of

G. The following is a list of cyclic groups, of which the first \évlﬁf;tgengragogzl ’b '6" ST"} Sg?e{ttlﬁét’ ' ’ﬁ/“éi rsspectlvealy,
three have received the greatest attention in EIGamal schenfes. '~ * b . ' QIVeNsy, - -, S,
t1°, -+, t," and eithera or b, one can computés, b]. This is

verified since, e.g. if we know = ¢;, ®1 - - - ¢;, “« then
1) Zj, the multiplicative group of integers modulo a prime.
2) F5.., the multiplicative group of finite fieldFym of [a,b] = (ti,©1 )% - (¢, %% )%D.
characteristic 2.
3) [, the multiplicative group of the finite fieltf; where
qg=p™, p aprime. Arithmetica leverages the above observation to enable key
4) Z:, the group of units—where is a composite integer. exchange as follows. Suppose that Alice and Bob want to agree
5) The group of points on an elliptic curve over a finiteon a key. The groug: and two finitely generated subgroufs
field. andT in G are the public information. The secret information
6) The Jacobian of a hyperelliptic curve over a finite fields a € S chosen by Alice, and € T chosen by Bob. The
7) Class groups of imaginary quadratic number fields [12public keys ares{,---,s,,* for Alice, andt,®,--- t,,° for
Bob. The shared secret is then taken to[dae)].

In each of the above generalizations—as in the classical
setting (1)-the security of the encryption scheme rests onln this paper we propose new paradigms for non-
the (unproven) difference in the complexity of multiplicatiorffommutative key-exchange, based on the ElGamal and various
and discrete logarithm, and more precisely, the so-call§oup-theoretic decision problems.
Decisional Diffie-Hellman (DDH) assumption [4].

In this paper we extend EIGamal from cyclic groups to the I
more general setting of non-commutative groups for which
DDH is believed to hold. Although the proposed schemes can
be used for general encryption, we will present them in thewe will present two new group-theoretic paradigms for

context of their application to key-exchange. As we shall segon-commutative key-exchange. The following exposition is
security in our proposed schemes will be based on the dispagtmmon to both:

between the various group-theoretic decision problems.

. NEwW PARADIGMS

Let G be a finitely presented non-abelian group having
solvable word problem. Leb,T" < G be finitely generated
proper subgroups of, for which the subgrougdsS,T] (i.e.
the subgroup generated bys,¢] | s € S,t € T}) is the
trivial subgroup consisting of just the identity element@®@f

In 1999, the Arithmetica or “commutator” key exchange [LNow suppose two parties, Alice and Bob, wish to establish a
was introduced by Anshel, Anshel and Goldfeld. In contrasession key over an unsecured network.

D. Prior Non-Commutative Key-Exchange Schemes



A. Non-Commutative Key Exchange using Conjugacy The feasibility of this scheme rests on the assumption that
products and inverses of elements @Gf can be computed
efficiently, and that the conjugacy problem is solvable. To
deduce Bob’s private key from public information would
require solving the equatiom™ = s~'g"s for n ands, given
the public valueg™ andw. This is called th@ower conjugacy
search problenfor G. Thus the security of this scheme rests
E =z() on the assumption that there is no fast algorithm for solving
the power conjugacy search problem for the gratip

Bob takess € S,b € G and published and ¢ = b° as
his public keys, keeping as his private key. If Alice wishes
to sendz € G as a session key to Bob, she first chooses
randomt¢ € T and sends

to Bob, along with the header

h =10
Bob then calculate$ht)* = (b°)' = ¢! with the header. He ll. ANALYSIS OF PARADIGM REQUIREMENTS
can now compute
E = () In this section we describe the requirements for a gréup

which allows him to decrypt the session key, to be a good candidate for the previously described paradigms.

t ’ t ty—1
(x(c ))E - (x(c ))(c )

The elementr € G can now be used as a session key. A. Normal Forms

The feasibility of this scheme rests on the assumption thatPrior to the transmission of the encrypted message it is
products and inverses of elements(dfcan be computed effi- necessary to disguise the form of this message. The importance
ciently. To deduce Bob’s private key from public informatiorof this is obvious since if Bob were to send Alice the word
would require solving the equation = b° for s, given the xz~'az, the eavesdropper could just examine the word in it’s
public valuesb and c. This is called theconjugacy search present form and read out the middle section, determining
problem for G. Thus the security of this scheme rests othe “hidden” message. This situation is unacceptable and a
the assumption that there is no fast algorithm for solving threethod must be devised to obliterate information about poten-
conjugacy search problem for the groGp tial factorizations of a group element when it is transmitted.

A finitely presented groug- is said to have amormal formif
every elemeny € G may be expressed uniguely in the form

B. Non-Commutative Key Exchange using Power Conjugacy .,
g:Haﬂ re; € 7.

(3

What if the conjugacy search problem is tractable? TIWhereai is either a generator af or a commutator of gen-
next paradigm embellishes conjugacy-based key exchange,fgiqrs The existence of a unique aamonicalnormal form
address .thls possibility. Bob taliese 5, 9 € G _andn €N in certain classes of groups provides an invaluable, efficient
and publishes = g™ andw = s™"gs as his public keys. Bob \yo1h4 for masking information about potential factorizations
keepsn € N andls € 5 as his private keys. Note thatandw ¢ 5 roup element. The existence of canonical normal forms
satisfyw” = s~ vs. If Alice wishes to send: € G 10 BOb, 554 jmply the solvability of the word problem, since testing
she first chooses a random € N and¢ € T'. To encryptz, yhether an element is trivial simply requires writing it in
Alice computes normal form and then checking to see if the expression is

E =gz (v)"te = 271 g™t trivial, i.e. n = 0.

and sends it to Bob along with the header

h=t"w"t=t""s""g"st. B. Exponential Growth

Bob receivesk and h, and computes
B = shs~t =t 1gmne Let G be a finitely generated group. The growth function

v : N — R is defined byy(n) = #{w € G : I(w) < n}
Note thatE = z~'E’x, so if Bob can solve the conjugacywhere /(w) is the length ofw as a word in the generators
search problem, he can obtaine G, which can then serve of G. If we use normal forms to represent group elements,
as the common secret that can be used as a symmetric sesfien each element has a unique representation, and there is
key for secure communication. an obvious relation between the growth function of a group



and the key space that the group provides. A large growth rateA subnormal series with these properties is called a
would imply a large key space for the set of all possible keypplycyclic series Clearly, polycyclic groups are a non-
thus making the brute force search of this space intractabdemmutative generalization of cyclic groups, since the latter
Ideally, we would like to use groups which exhibit provabljhave a polycyclic series withh = 1. The Hirsch lengthof
exponential growth. a polycyclic groupG is the number of infinite groups in its
polycyclic series. The Hirsch length of a group is independent
of the choice of polycyclic series, as a consequence of the

C. Complexity Considerations Schreier Refinement Theorem.

The key exchange scheme A basedcomjugacyrelies on
the hypothesis that the complexity of conjugacy is exponeﬁ:
tially higher than the complexity of the word problem. While
this is not known to be true in general, it is clear that the A polycyclic group can always be presented in with a finite
complexity of conjugacy is not less than the complexity of theet of generators,...,a,, which are related b}/ a set of
word problem. To see this assume that the conjugacy prom%ﬁhations of the following formsa® = w;;, P I vij,
for G is solvable. Hence there exists an algorithm such that. _ ugy, wherek € {1,...,n} =1, e Nif i € I, and

given v, w € G that lie in the same conjugacy class, we cafhg right hand sidesy;;, v;;, u;; of the relations are words in
obtain ak S G that satisfiess = k= 1vk. Takiqg the special he generators, 1, ..., a,. Using induction, one may show
casek = 1yieldsw = v = wv™" = 1, hence given any word, 4t every element in the group defined by this presentation can
g=gg3 g €G pe lwritten in the forrmf1 ceeath Wit.h €i € Z and0 < € <Ti
L g gf o~ (g i) VI < < if i € I. A po_lycycllc presentation is calledonssten_tlf
g 9 9i i+1 7 In - every element in the group defined by the presentation can
where~ represents the equivalence relation “is conjugate tdie represented uniquely by a word of the fouft - - - aé»
with e; € Z and0 < ¢; < r; if ¢ € I, and in this case
The key exchange scheme B based pmwer conjugacy these words are called normal words. It is well-known that
relies on the hypothesis that the complexity of power conj§Very polycyclic group has a consistent polycyclic presentation
gacy is exponentially higher than the complexity of conjugacgnd these presentations are frequently used as a basis for
While this is not proven in general, it is clear that th€0omputations with polycyclic groups [14]. Every polycyclic
complexity of power conjugacy is not less than the complexi§fOUp can also be described as a finitely generated subgroup
of the conjugacy. To see this, assume that the power conjug@éynatrices with integer valued entries, i.e. the gréup(d, Z)
problem is solvable. This means that we have a method @ somed € N.
givenv,w € G, we can obtain mm € N andk € G that
satisfiesw™ = k~'vk. Therefore giver, b € G that lie in the
same conjugacy class, we can fing G such thatz = £~ 1bk. B. Growth Rate
This follows since conjugacy is just a special case of power
conjugacy problem, when = 1.

Normal Forms

A large class of polycyclic groups are known to have an
exponential growth rate (namely those which are not virtually

IV. A SPECIFICSCHEME BASED ONPoLYcYCLIC GROUPS nilpotent, see Wolf [16] and Milnor [13]).

A group G is said to bepolycyclicif it has a series
GrGp>Gpro1>...>G1>Gy = {1}

C. Complexity Considerations

where foreach =1,...,n —1; As was explained in the previous section polycyclic groups
are linear groups, that is they can be embedded as a sub-
group of GL(n,Z). In this setting, both group multiplication
and the word problem are efficiently solvable, since matrix
Vo € Gip1,y € Giia lyr € Gy multiplication for such groups is solvable in polynomial time.
The conjugacy problem for polycyclic groups is decidable
by results of Remeslenikov [15] and Blackburn [3]. To see
directly, we can appeal to the fact that polycyclic group is a
dreGi,neN:y=uazz". subgroup ofGL(n,Z). This leads to the following lemma:

1) G; is anormal subgroupf G;14, i.e. G; < G;4+1 and

2) The quotient7;,,/G; is a cyclic group, i.e3z € G;41
such thatvy € G;11



Lemma 1:Let G < GL(n,F*) then if z,y € G are VI. CONCLUSION
conjugate then the Jordan normal formazofs also the Jordan

normal form ofy. We have proposed two new paradigms for the construction

of group-theoretic one-way functions for key exchange. Our
paradigms are based on the complexity differences between
various group-theoretic decision problems, specifically the
complexity gap betweeronjugacyand word problems, and
the complexity gap betwegmower conjugacyand conjugacy
problems. We have argued thaolycyclic groupsfulfill the

Proposition 2: The search conjugacy problem in any subthree characteristics required in order for a group to provide
group of the General Linear group is solvable. security within these new paradigms. Our experimental trials
confirm that these schemes will provide effective one way
functions for public key exchange. Our future research and
development efforts include implementing practical crypto-
graphic tools based on the polycyclic groups schemes de-
scribed in this paper.

Proof: Let J(a) be the Jordan normal form af € G,
whereG < GL(n,F*). Let G < GL(n,F*) andz,y € H
such that3k € H : x = y*. Sincex,y € GL(n,F*), then
Jp € GL(n,F*) : J(z) = 2P = y*? = J(y). |

Proof: Let G < GL(n,F*) Assume that,w € G are
conjugate, that islk € G : v = k~'wk. Then by Lemma 1
J(v) = J(w), then3p, ¢ € GL(n,F*) such that/(v) = vP =
w? = J(w) which implies thatv = w”" | this solves the
conjugacy search problem. [ ]
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