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A Non-Commutative Generalization of ElGamal
Key Exchange using Polycyclic Groups

Delaram Kahrobaei† Bilal Khan∗

Abstract— In this paper, we propose a non-commutative key-
exchange scheme which generalizes the classical ElGamal Cipher
to polycyclic groups. We describe the criteria for groups which
would provide good candidates for such cryptosystems, we also
examine the complexity of the decision problems related to these
key exchange.

I. I NTRODUCTION

The ElGamal algorithm [7] is an asymmetric encryption al-
gorithm for public key cryptography, based on Diffie-Hellman
[5] key agreement. ElGamal is semantically secure [10] under
reasonable assumptions, and is probabilistic [11] in the sense
that a single plaintext can encrypt to many possible ciphertexts.
The ElGamal algorithm is widely used in the free GNU
Privacy Guard software, recent versions of PGP, and several
other cryptosystems1.

A. Classical ElGamal

The original ElGamal encryption scheme operates as fol-
lows. Suppose Alice and Bob wish to communicate over a
network in a manner secure from malicious eavesdroppers.
First, Bob fixes a large primep (say p > 10150), a primitive
root b mod p (meaning that anyy ∈ Zp may be expressed
as y = bl mod p for somel), and an integerc in the range
1 < c < p. The primitivity of b implies that there is somè
for which b` = c mod p. Bob’s private key is taken to bè,
while his public key is the tuple(b, c, p).

Alice performsencryptionby segmenting the plaintextx
and encoding it as a sequence of integers in the range0 <
x < p. Since each integer is treated independently, and so
we assume (without loss of generality) thatx consists of
precisely one integer in the interval(0, p). Alice chooses a
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1The Digital Signature Algorithm is a variant of the ElGamalsignature
scheme, and should not be confused with the ElGamal algorithm.

temporary secret in the form of an auxiliary random integerr
and encrypts a plaintext as

X = (x · cr) mod p.

Along with this encrypted messageX, Alice includes the
header br. Note that for encryption Alice needs to know
only (b, c, p) i.e. Bob’s public key. Alice chooses the random
temporary secretr, but does not require the discrete logarithm
`, which remains Bob’s secret.

Bob performsdecryptionby first manipulating the header

(br)` = br·` = (b`)r = cr mod p.

Sincep is prime, cr has a computable multiplicative inverse
in Zp. It follows that the original message can be recovered
by noting that

X · (cr)−1 = x · cr · (cr)−1 = x mod p.

Note that decryption requires knowledge of the discrete loga-
rithm ` but not the random temporary secretr.

The ElGamal cipher leverages the purported difficulty of
computing thediscrete logarithm, that is givenb, c andp in

bx ≡ c mod p,

it is computationally infeasible to determinex. There is little
connection between discrete logarithms and logarithms inZ.
The discrete logarithm can be attacked in one of two ways,
one can take the naı̈ve approach using trial and error, but
if p is very large this method is highly inefficient. To avoid
specialized logarithm computation attacks that are effective in
certain cases, Bob must choosep such thatp−1 does not have
“too many” small prime factors [8]. To date no efficient way of
computing discrete logarithms has been found. The best fully
proved algorithm for solving this problem is the Index-calculus
algorithm [9], which has time complexityO(e

√
nlogn) where

n is the bit-size of the modulusp. If the discrete logarithm
problem could be solved efficiently, then ElGamal would be
broken.



B. Key Exchange with ElGamal

Unlike the original Diffie-Hellman protocol, ElGamal is
intended to encrypt messages, not merely to communicate
session keys. However, because of the computational expense
of asymmetric encryption, hybrid encryption strategies are
often used. ElGamal can be used for key exchange, simply by
encrypting a short key to be used in a symmetric-key cipher.
The (much longer) intended messages are then encrypted more
efficiently using the symmetric-key cipher.

C. Prior Commutative Generalizations of ElGamal

The ElGamal cipher is typically described in the setting of
the multiplicative groupZp, for prime integerp. However, it
can be readily generalized to work in any finite cyclic group
G. The following is a list of cyclic groups, of which the first
three have received the greatest attention in ElGamal schemes:

1) Z∗p, the multiplicative group of integers modulo a prime.
2) F∗2m , the multiplicative group of finite fieldF2m of

characteristic 2.
3) F∗q , the multiplicative group of the finite fieldF∗q where

q = pm, p a prime.
4) Z∗n, the group of units–wheren is a composite integer.
5) The group of points on an elliptic curve over a finite

field.
6) The Jacobian of a hyperelliptic curve over a finite field.
7) Class groups of imaginary quadratic number fields [12].

In each of the above generalizations–as in the classical
setting (1)–the security of the encryption scheme rests on
the (unproven) difference in the complexity of multiplication
and discrete logarithm, and more precisely, the so-called
Decisional Diffie-Hellman (DDH) assumption [4].

In this paper, we extend ElGamal from cyclic groups to the
more general setting of non-commutative groups for which
DDH is believed to hold. Although the proposed schemes can
be used for general encryption, we will present them in the
context of their application to key-exchange. As we shall see,
security in our proposed schemes will be based on the disparity
between the various group-theoretic decision problems.

D. Prior Non-Commutative Key-Exchange Schemes

In 1999, the Arithmetica or “commutator” key exchange [1]
was introduced by Anshel, Anshel and Goldfeld. In contrast

with Diffie-Hellman and ElGamal, it uses non-commutative
groups such as braid groups [2].

The following terminology is required to describe the Arith-
metica scheme. LetG be a (not necessarily finite) group
with generatorsg1, g2, · · · gl. Given a, b ∈ G, we define the
conjugateof a by b to be b−1ab and write it asab; likewise,
we define thecommutatorof a and b to be a−1b−1ab, and
write it as [a, b]. A subsetX ⊂ G is called asubgroupif it is
closed under multiplication and inverses, and the relationship
betweenX and G is then denotedX < G. The groupG is
said to have asolvable word problemif there is a uniform
algorithm which, given any element fromG (represented as a
product of its generatorsgi) determines whether the element
is equal to the identity element inG.

The Arithmetica scheme is based on the following obser-
vation: Let S and T be two finitely generated subgroups of
G with generators{s1, · · · , sn} and{t1, · · · , tm} respectively,
and let a ∈ S and b ∈ T . Note that givensa

1 , · · · , sm
a,

t1
b, · · · , tmb and eithera or b, one can compute[a, b]. This is

verified since, e.g. if we knowb = ti1
ei1 · · · tik

eik then

[a, b] = (ti1
ei1 )a · · · (tik

eik )ab.

Arithmetica leverages the above observation to enable key
exchange as follows. Suppose that Alice and Bob want to agree
on a key. The groupG and two finitely generated subgroupsS,
andT in G are the public information. The secret information
is a ∈ S chosen by Alice, andb ∈ T chosen by Bob. The
public keys aresa

1 , · · · , sm
a for Alice, and t1

b, · · · , tmb for
Bob. The shared secret is then taken to be[a, b].

In this paper, we propose new paradigms for non-
commutative key-exchange, based on the ElGamal and various
group-theoretic decision problems.

II. N EW PARADIGMS

We will present two new group-theoretic paradigms for
non-commutative key-exchange. The following exposition is
common to both:

Let G be a finitely presented non-abelian group having
solvable word problem. LetS, T < G be finitely generated
proper subgroups ofG, for which the subgroup[S, T ] (i.e.
the subgroup generated by{[s, t] | s ∈ S, t ∈ T}) is the
trivial subgroup consisting of just the identity element ofG.
Now suppose two parties, Alice and Bob, wish to establish a
session key over an unsecured network.



A. Non-Commutative Key Exchange using Conjugacy

Bob takess ∈ S, b ∈ G and publishesb and c = bs as
his public keys, keepings as his private key. If Alice wishes
to sendx ∈ G as a session key to Bob, she first chooses a
randomt ∈ T and sends

E = x(ct)

to Bob, along with the header

h = bt.

Bob then calculates(bt)s = (bs)t = ct with the header. He
can now compute

E′ = (ct)−1

which allows him to decrypt the session key,

(x(ct))E′ = (x(ct))(c
t)
−1

= x.

The elementx ∈ G can now be used as a session key.

The feasibility of this scheme rests on the assumption that
products and inverses of elements ofG can be computed effi-
ciently. To deduce Bob’s private key from public information
would require solving the equationc = bs for s, given the
public valuesb and c. This is called theconjugacy search
problem for G. Thus the security of this scheme rests on
the assumption that there is no fast algorithm for solving the
conjugacy search problem for the groupG.

B. Non-Commutative Key Exchange using Power Conjugacy

What if the conjugacy search problem is tractable? The
next paradigm embellishes conjugacy-based key exchange to
address this possibility. Bob takess ∈ S, g ∈ G and n ∈ N
and publishesv = gn andw = s−1gs as his public keys. Bob
keepsn ∈ N ands ∈ S as his private keys. Note thatv andw
satisfy wn = s−1vs. If Alice wishes to sendx ∈ G to Bob,
she first chooses a randomm ∈ N and t ∈ T . To encryptx,
Alice computes

E = x−1t−1(v)mtx = x−1t−1gmntx

and sends it to Bob along with the header

h = t−1wmt = t−1s−1gmst.

Bob receivesE andh, and computes

E′ = shns−1 = t−1gmnt.

Note thatE = x−1E′x, so if Bob can solve the conjugacy
search problem, he can obtainx ∈ G, which can then serve
as the common secret that can be used as a symmetric session
key for secure communication.

The feasibility of this scheme rests on the assumption that
products and inverses of elements ofG can be computed
efficiently, and that the conjugacy problem is solvable. To
deduce Bob’s private key from public information would
require solving the equationwn = s−1gns for n ands, given
the public valuesgn andw. This is called thepower conjugacy
search problemfor G. Thus the security of this scheme rests
on the assumption that there is no fast algorithm for solving
the power conjugacy search problem for the groupG.

III. A NALYSIS OF PARADIGM REQUIREMENTS

In this section we describe the requirements for a groupG
to be a good candidate for the previously described paradigms.

A. Normal Forms

Prior to the transmission of the encrypted message it is
necessary to disguise the form of this message. The importance
of this is obvious since if Bob were to send Alice the word
x−1ax, the eavesdropper could just examine the word in it’s
present form and read out the middle section, determininga,
the “hidden” message. This situation is unacceptable and a
method must be devised to obliterate information about poten-
tial factorizations of a group element when it is transmitted.
A finitely presented groupG is said to have anormal formif
every elementg ∈ G may be expressed uniquely in the form

g =
n∏

i=1

aεi
i : ei ∈ Z.

Whereai is either a generator ofG or a commutator of gen-
erators. The existence of a unique orcanonicalnormal form
in certain classes of groups provides an invaluable, efficient
method for masking information about potential factorizations
of a group element. The existence of canonical normal forms
also imply the solvability of the word problem, since testing
whether an element is trivial simply requires writing it in
normal form and then checking to see if the expression is
trivial, i.e. n = 0.

B. Exponential Growth

Let G be a finitely generated group. The growth function
γ : N −→ R is defined byγ(n) = #{w ∈ G : l(w) ≤ n}
where l(w) is the length ofw as a word in the generators
of G. If we use normal forms to represent group elements,
then each element has a unique representation, and there is
an obvious relation between the growth function of a group



and the key space that the group provides. A large growth rate
would imply a large key space for the set of all possible keys,
thus making the brute force search of this space intractable.
Ideally, we would like to use groups which exhibit provably
exponential growth.

C. Complexity Considerations

The key exchange scheme A based onconjugacyrelies on
the hypothesis that the complexity of conjugacy is exponen-
tially higher than the complexity of the word problem. While
this is not known to be true in general, it is clear that the
complexity of conjugacy is not less than the complexity of the
word problem. To see this assume that the conjugacy problem
for G is solvable. Hence there exists an algorithm such that
given v, w ∈ G that lie in the same conjugacy class, we can
obtain ak ∈ G that satisfiesw = k−1vk. Taking the special
casek = 1 yieldsw = v ⇒ wv−1 = 1, hence given any word,

g = gε1
1 gε2

2 · · · gεn
n ∈ G

g = 1 ⇔ gε1
1 · · · gεi

i ∼ (gεi+1
i+1 · · · gεn

n )−1 : ∀1 ≤ i < n.

where∼ represents the equivalence relation “is conjugate to”.

The key exchange scheme B based onpower conjugacy
relies on the hypothesis that the complexity of power conju-
gacy is exponentially higher than the complexity of conjugacy.
While this is not proven in general, it is clear that the
complexity of power conjugacy is not less than the complexity
of the conjugacy. To see this, assume that the power conjugacy
problem is solvable. This means that we have a method that
given v, w ∈ G, we can obtain an ∈ N and k ∈ G that
satisfieswn = k−1vk. Therefore givena, b ∈ G that lie in the
same conjugacy class, we can findk ∈ G such thata = k−1bk.
This follows since conjugacy is just a special case of power
conjugacy problem, whenn = 1.

IV. A SPECIFICSCHEME BASED ONPOLYCYCLIC GROUPS

A group G is said to bepolycyclic if it has a series

G . Gn . Gn−1 . . . . . G1 . G0 = {1}
where for eachi = 1, . . . , n− 1:

1) Gi is a normal subgroupof Gi+1, i.e. Gi < Gi+1 and

∀x ∈ Gi+1, y ∈ Gi : x−1yx ∈ Gi

2) The quotientGi+1/Gi is a cyclic group, i.e.∃z ∈ Gi+1

such that∀y ∈ Gi+1

∃x ∈ Gi, n ∈ N : y = xzn.

A subnormal series with these properties is called a
polycyclic series. Clearly, polycyclic groups are a non-
commutative generalization of cyclic groups, since the latter
have a polycyclic series withn = 1. The Hirsch lengthof
a polycyclic groupG is the number of infinite groups in its
polycyclic series. The Hirsch length of a group is independent
of the choice of polycyclic series, as a consequence of the
Schreier Refinement Theorem.

A. Normal Forms

A polycyclic group can always be presented in with a finite
set of generatorsa1, . . . , an, which are related by a set of

equations of the following forms:aai
j = wij , a

a−1
i

j = vij ,
ark

k = ukk, wherek ∈ {1, . . . , n} = I, ri ∈ N if i ∈ I, and
the right hand sideswij , vij , ujj of the relations are words in
the generatorsaj+1, . . . , an. Using induction, one may show
that every element in the group defined by this presentation can
be written in the formae1

1 · · · aen
n with ei ∈ Z and0 ≤ ei < ri

if i ∈ I. A polycyclic presentation is calledconsistentif
every element in the group defined by the presentation can
be represented uniquely by a word of the formae1

1 · · · aen
n

with ei ∈ Z and 0 ≤ ei < ri if i ∈ I, and in this case
these words are called normal words. It is well-known that
every polycyclic group has a consistent polycyclic presentation
and these presentations are frequently used as a basis for
computations with polycyclic groups [14]. Every polycyclic
group can also be described as a finitely generated subgroup
of matrices with integer valued entries, i.e. the groupGL(d,Z)
for somed ∈ N.

B. Growth Rate

A large class of polycyclic groups are known to have an
exponential growth rate (namely those which are not virtually
nilpotent, see Wolf [16] and Milnor [13]).

C. Complexity Considerations

As was explained in the previous section polycyclic groups
are linear groups, that is they can be embedded as a sub-
group ofGL(n,Z). In this setting, both group multiplication
and the word problem are efficiently solvable, since matrix
multiplication for such groups is solvable in polynomial time.
The conjugacy problem for polycyclic groups is decidable
by results of Remeslenikov [15] and Blackburn [3]. To see
directly, we can appeal to the fact that polycyclic group is a
subgroup ofGL(n,Z). This leads to the following lemma:



Lemma 1:Let G < GL(n,F∗) then if x, y ∈ G are
conjugate then the Jordan normal form ofx is also the Jordan
normal form ofy.

Proof: Let J(a) be the Jordan normal form ofa ∈ G,
where G < GL(n,F∗). Let G < GL(n,F∗) and x, y ∈ H
such that∃k ∈ H : x = yk. Sincex, y ∈ GL(n,F∗), then
∃p ∈ GL(n,F∗) : J(x) = xp = ykp = J(y).

Proposition 2: The search conjugacy problem in any sub-
group of the General Linear group is solvable.

Proof: Let G < GL(n,F∗) Assume thatv, w ∈ G are
conjugate, that is∃k ∈ G : v = k−1wk. Then by Lemma 1
J(v) = J(w), then∃p, q ∈ GL(n,F∗) such thatJ(v) = vp =
wq = J(w) which implies thatv = wqp−1

, this solves the
conjugacy search problem.

Implementing theorem 2 into an algorithm yields a solu-
tion to the search conjugacy problem. Although the precise
complexity of conjugacy search is not known, it is widely
conjectured to be exponential. The status of power conjugacy
search for polycyclic groups remains anopen question—no
uniform algorithm is known.

V. EXPERIMENTAL EVALUATION

Recently Eick and Kahrobaei [6], ran a series of experiments
on how the complexity of the conjugacy problem varied with
the Hirsch length of a polycyclic group using a collection
algorithm. Their findings were that the time complexity grew
exponentionaly relitive to the Hirsch length. For example
with a Hirsch length of 2, the word problem on a randomly
generated word took 0.00 secs and 9.96 secs for the conjugacy
problem, however for a Hirsch length of 14, the time took to
solve the word problem took 0.05 secs, however the conjugacy
problem took in excess of 100 hours. These results demon-
strated the suitability of polycyclic groups in cryptology.

r h(G(w)) coll conj
3 2 0.00 sec 9.96 sec
4 2 0.00 sec 9.37 sec
7 6 0.01 sec 10.16 sec
11 14 0.05 sec > 100 hrs

For the prime 11, the result of a single conjugacy test
could not be computed within one hundred hours using the
current methods. For primes larger than 11, the run-times of
experiments are expected to be dramatically longer.

VI. CONCLUSION

We have proposed two new paradigms for the construction
of group-theoretic one-way functions for key exchange. Our
paradigms are based on the complexity differences between
various group-theoretic decision problems, specifically the
complexity gap betweenconjugacyand word problems, and
the complexity gap betweenpower conjugacyand conjugacy
problems. We have argued thatpolycyclic groupsfulfill the
three characteristics required in order for a group to provide
security within these new paradigms. Our experimental trials
confirm that these schemes will provide effective one way
functions for public key exchange. Our future research and
development efforts include implementing practical crypto-
graphic tools based on the polycyclic groups schemes de-
scribed in this paper.
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