
Hiding Your Wares: Transparently Retrofitting
Memory Confidentiality into Legacy Applications

Jamie Levy Bilal Khan
Department of Mathematics and Computer Science

John Jay College of Criminal Justice
New York, NY

Email: {jlevy,bkhan}@jjay.cuny.edu

Abstract— Memory scanning is a common technique used by
malicious programs to read and modify the memory of other
programs. Guarding programs against such exploits requires
memory encryption, which is presently achievable either by(i)
re-writing software to make it encrypt sensitive memory contents,
or (ii) employing hardware-based solutions. These approaches are
complicated, costly, and present their own vulnerabilities. In this
paper, we describe new secure software technology that enables
users to transparently add memory encryption to their existing
software, without requiring users to invest in costly encryption
hardware or requiring programmers to undertake complicated
software redesign/redeployment. The Memory Encryption and
Transparent Aegis Library (METAL) functions as a shim libra ry,
allowing legacy applications to transparently enjoy an assurance
of memory confidentiality and integrity. The proposed solution
is tunable in terms of trade-offs between security and compu-
tational overhead. We describe the design of the library and
evaluate its benefits and performance trade-offs.

I. I NTRODUCTION

Many people doing secure programming in UNIX or UNIX-
like environments are painfully surprised by the existenceof
/dev/mem and /dev/kmem. Together, these device files
permit the root user to access arbitrary contents of physical
memory and kernel memory, respectively—byte addresses in
/dev/mem are interpreted as physical memory addresses,
while byte addresses in/dev/kmem are interpreted as kernel
virtual memory addresses. There is nothing one can do to
prevent access to these device files, since from a kernel per-
spective, root is omnipresent and omniscient. Unfortunately,
the ability to read and write to arbitrary memory makes it
quite feasible for malicious programs to violate the implicit
memory confidentiality and integrity assumptions made by
other processes.

The problem of memory confidentiality has received con-
siderable recent attention in the context of the study of “data
lifetimes” [1]. Data lifetime researchers have noted that an
application’s sensitive data is often scattered widely through
user and kernel memory, and continues to reside there for
indefinite periods of time [2] , evenlong after the program
terminates. In contrast, our research here considers the prob-
lem of application data confidentialityduring the lifetime of the
application; the data lifetime problem is solved as a corollary.

Certain well-established secure software design principles
[6] attempt to address application data confidentiality issues.
For example, it is common knowledge [7] that sensitive

data such as cryptographic keys and passwords should be
zeroed in memory immediately after they are known to be
no longer needed. Unfortunately, these judicious strategies are
too frequently disregarded by application, web browser and
web server programmers. As a consequence, most consumer
software faces increased risk given that sensitive user data is
exposed in memory once a system has been compromised—
this data can be easily examined by reading the previously
mentioned memory device files, or inducing memory core
dumps [8]–[11] by triggering program bugs. This paper de-
scribes a mechanism by which memory confidentiality can be
provided transparently to existing legacy applications bythe
user themselves, without mandating programmers to redesign
or even recompile their applications.

Reading/writing application heap memory is the foundation
of many nefarious exploits, as illustrated by the prolific HOW-
TO literature published within the hacker community (see
e.g. [4], [14]). One illustrative case of this is Joseph Corey’s
paper [4] which targets the Honeynet project’s Sebek intrusion
detection system [12]. Since Sebek is intended to function as
an IDS, its effectiveness hinges on remaining hidden from the
would-be attacker. Corey illustrates that Sebek can be detected
by searching for particular “landmark” patterns in memory,
and illustrates how by overwriting memory at specific relative
offsets from these patterns, program variables can be altered
in a manner that disables IDS functions. Corey’s attack is
immune to Address Space Layout Randomization (ASLR)–
a computer security feature which involves arranging the
positions of key data areas, usually including the base of the
executable and position of libraries, heap, and stack, randomly
in a process’ address space. By scanning memory contents to
obtain relative address information, Corey’s exploit sidesteps
the ASLR features supported by many operating systems such
as OpenBSD, Adamantix, Hardened Gentoo, Linux (via PaX,
Exec Shield, etc.), Windows (via Wehnus, BufferShield, etc.)
In this paper we describe a system which dynamically encrypts
heap memory, making it nearly impossible for the attacker
to find landmark patterns in memory, and hence preventing
determination of which location(s) in memory to overwrite.

The prototype system is called METAL, the Memory En-
cryption and Transparent Aegis Library. METAL is a shim



library which replaces the standard C memory management
functions providing transparent run-time encryption of heap-
allocated memory for both new and existing applications. Our
design objectives are:

1) Simplicity: no specialized hardware is needed.
2) Transparency: no rewriting or recompiling programs.
3) Openness: extensible with new encryption algorithms.
4) Performance: dynamic specification of trade-off between

performance and security.
Because of the central role of memory scans in security

exploits, METAL has far reaching potential impact in reducing
system vulnerabilities based on compromises of application
memory confidentiality and integrity.

II. PRIOR RELATED WORK

There are many projects relate to the subject of memory
encryption or memory access. Here we describe representa-
tives from three broad categories which influence the design
of METAL.

Memory Debuggers. The Efence [13] memory debug-
ger allows programmers to detect illegal memory accesses
made during a program’s execution. It is designed as a
debugging shim library which overrides the memory alloca-
tion/deallocation functions of the standard C library in order
to facilitate the detection of memory bugs in programs. The
approach taken is to serve program heap allocation requestsby
surreptitiously allocating an inaccessible page on eitherside
of requested memory. The inaccessible pages contain nothing
and are created by the Efence program solely in order to trap
illegal memory accesses. When a program tries to access past
(or outside) the bounds of its allocated array, it inadvertently
touches one of the inaccessible pages allocated by Efence,
and this results in a segmentation fault which is caught and
reported to the programmer. At this point the programmer can
trace back in the core dump to determine the programmatic
error. Efence therefore provides a transparent mechanism for
discovering improper memory accesses at program runtime.
Efence is relevant to our project because we use a similar
mechanism to allow us to interpose between the program and
memory. In our case, however, we interpose with the intention
of providing memory confidentiality.

Heap Protection. Point Guard takes an important step in
protection against illegal memory accesses on the heap. The
main idea behind Point Guard is to encrypt pointers. If the
pointers are encrypted, it makes it harder for the attacker to
determine memory addresses to target with malicious writes.
Point Guard encrypts a pointer and places it in memory until
it is needed [5]. When the program calls for the pointer, it
is taken from memory and decrypted to get its real value.
Then the decrypted pointer is handed to the program so that
it can use the pointer as it would normally. The program
needs the real value so that it will get the correct address. An
attacker would not be able to get the address in a conventional
manner, because s/he would only have access to the encrypted
value and not the decrypted (real) value. Though Point Guard
is a step in the right direction, it has its limitations. In

particular, Point Guard protects pointers, but not memory
contents themselves. It is intended principally to thwart sled
address guessing in buffer overflow attacks. In contrast, our
project is concerned with protecting the actual contents of
memory buffers from being observed by any process other
than the application that owns them.

Encryption Libraries . There are a large number of existing
libraries implementing strong cryptography (e.g. Libmcrypt,
cryptlib, Xceed, etc.) While these libraries are useful forpro-
grammers who wish to design their applications with security
concerns in mind, the libraries do not provide an easy way
to migrate existing stable but insecure applications. Indeed,
all the libraries we examined were themselves vulnerable to
memory scanning attacks, since they all store their algorithmic
state information in unprotected heap memory.

III. D ESIGN

METAL is designed as a shim library replacing the standard
C memory management functions (e.g.malloc, valloc,
calloc, free, cfree, etc.) The shim library memory
allocation functions usemmap to allocate a protected page
in memory, marking the page as inaccessible for reading and
writing. Information about memory allocations is maintained
in the library internals. When the application attempts to
access the page for reading and writing, a segmentation fault
occurs, triggered by a violation of page protections. The
shim library catches theSIGSEGV signal generated by the
segmentation fault, unprotects the page whose access caused
the fault, decrypts the page contents (in place), and registers a
system timer usingualarm(). The fault handler then exits,
and the offending instruction is automatically re-attempted,
this time of course succeeding without causing a fault. When
the registered system timer fires, the shim library catches
the SIGALRM signal generated by timer expiry, re-encrypts
any outstanding decrypted pages and re-protects them. The
main parameter in the operation of the METAL library is
the duration of the re-encryption timer,METAL_TIMER. Note
that the timer is absolutely necessary in the design. The page
cannot be re-encrypted and re-protected at the very end of
the segmentation fault handler because this would result in
another fault when the memory access was re-attempted after
the handler exits; an infinite stream of faults would result.

The encryption and decryption of a page is implemented in
a manner that is simple, fast and has limited memory exposure
of its own. When the application first starts, the shim library
generates a random32 bit key K, which it stores in a register.
Encryption of a page is carried out word-by-word by doing an
XOR of memory contents with a dynamically generated “pad”
value. This pad value is obtained by hashing both the memory
address and the key. For example, if the true (cleartext) value
at addressA is X , after encryption the content ofA will be
X ⊕ H(A, K). The encryption scheme can thus be viewed
as a dynamic randomized Vernam-Mauborgne one-time pad.
Decryption is the same as encryption, since

X ⊕ H(A, K) ⊕ H(A, K) = X ⊕ 0 = X.



The keyK remains unexposed to memory scans since it is
stored in registers and does not enter random access memory.
The simplest (and fastest) hash functions we considered were

H(A, K) = K

H(A, K) = K ⊕ (A & 0xFFFFFFFF)

H(A, K) = AK mod 0x7FFFFFFF.

In the last scheme 0x7FFFFFFF= 2147483647 is a prime.

IV. A NALYSIS

Suppose that an application usesm pages and that the
secret of interest to the attacker resides on precisely one of
thesem pages. The application reads/writes (uniformly at
random) to these pages at a cumulative rate of once every
r seconds, so each page is expected to be read from/written
to once everyrm seconds. An access exposes the page for
≤ c =METAL_TIMER seconds, after which METAL’s timer
expires and results in re-encryption/re-protection of thepage.
The probability that the secret is exposed at any given time is
thus at most c

rm
.

Suppose the attacker is able to narrow down the set of
pages on which the application’s sensitive data resides to a
superset of the actual pages that the application uses. The
attacker operates by cycling through this superset ofp ≥ m
pages, takings seconds to scan each page for the patterns
or “landmarks” of interest, in the manner suggested by the
exploits of Corey and others. At any given time, the probability
that the attacker is examining the page with the sought-after
secret is is1/p. Thus the probability that secret is seen as
cleartext by the attacker is at mostc

rmp
, and the expected

time before the attacker uncovers the page issrmp

c
seconds.

V. EXPERIMENTS AND EVALUATION

The address space layout randomization feature supported
by most modern UNIX variants makes the placement of ap-
plication pages inside of/dev/mem extremely unpredictable.
In practice, we found no reliable way to enable the attacker
to narrow down the value ofp. If the attacker is unable to
narrow downp then the only viable strategy is to scan the
entire memory, which on a machine with2G of memory (and
4K-sized pages) meansp = 524288. We made the application
secret detectable through regular expression matching and
allowed the attacker to use thegrep utility to search for it
on each page. In practice, the regular expression search took
approximatelys = 4.6 × 10−4 seconds per page. We set the
METAL timer at 50ns, and gave the applicationm = 100
pages, with a cumulative access rate of1000 accesses per
second. This figure was determined by assessing the Sebek
application which accesses its sensitive IP address variables
relatively infrequently, only at particular transition points in
its state. Based on these parameter values, our analysis in
the previous section indicates that the expected time for the
attacker to see the secret is on the order of134 hours. In
practice, we found that the attacker was unable to find the
secret for well over twice this period of time.

TABLE I

MEMORY OVERHEAD OF METAL

Program Memory Usage Memory Usage

with METAL w/o METAL

vim 1305 pages 743 pages

emacs 4990 pages 2574 pages

xterm 1355 pages 2182 pages

firefox 18204 pages 9626 pages

A. Simple?

METAL does not require any specialized hardware to per-
form memory encryption.

B. Transparent?

METAL operates as a shim library, and so can be plugged
into any existing binary which dynamically links to the stan-
dard C libraries. This process does not require programmersto
redesign their software to make use of cryptographic libraries,
nor does it require recompiling code with specialized com-
pilers that embed encryption strategies into the object code.
Rather, the transition from unsecure memory applications
to secure memory applications is easy; the scheme can be
retrofitted into existing legacy applications by the end user
themselves—all they have to do is ensure that the METAL
library is ahead of the standard C libraries in the linker/loader
LD_LIBRARY_PATH search path.

C. Open?

We have used very simple hashing schemes to minimize the
computational overhead and neutralize the possibility that the
encryption scheme could itself be attacked through memory
scans. The scheme has the security of a dynamic (albeit algo-
rithmically generated) one-time pad constructed from a ran-
dom keyK. In principle, however, any encryption/decryption
scheme could be substituted into the METAL framework.

D. Performance?

METAL provides memory confidentiality but presents over-
head costs both in terms of memory footprint and processing
time.

Table I shows the comparative memory resident sizes of
four common applications, running with and without METAL.
The blowup in memory footprint for such applications is on
average less than double, approximately1.8.

Table II shows the comparative slowdown of memory ac-
cesses in applications with and without METAL, for various
values of theMETAL_TIMER= c and application access rate
r. Memory accesses using METAL are between5× and150×
slower than raw memory accesses via the standard C library.

Whenr < c, we note that asr/c tends to0, the access time
with METAL approaches the access time without METAL.
For example, whenc = 100000µs andr = 10µs, the time
to access a word memory is (on average)0.22µs for an
application linked with METAL, while the time to access



TABLE II

COMPUTATIONAL OVERHEAD OF METAL

METAL Access Time per access Time per access

TIMER (c) Rate (r) with METAL w/o METAL

100000µs 100000µs 48.79µs 0.69µs

100000µs 10000µs 1.93µs 0.13µs

100000µs 1000µs 0.42µs 0.08µs

100000µs 100µs 0.29µs 0.06µs

100000µs 10µs 0.22µs 0.04µs

10000µs 100000µs 47.81µs 0.33µs

10000µs 10000µs 13.50µs 0.11µs

10000µs 1000µs 2.62µs 0.07µs

10000µs 100µs 1.85µs 0.05µs

10000µs 10µs 1.43µs 0.04µs

1000µs 100000µs 31.62µs 0.21µs

1000µs 10000µs 11.85µs 0.10µs

1000µs 1000µs 7.28µs 0.07µs

1000µs 100µs 5.26µs 0.05µs

1000µs 10µs 4.12µs 0.04µs

100µs 100000µs 23.68µs 0.16µs

100µs 10000µs 10.53µs 0.09µs

100µs 1000µs 6.77µs 0.06µs

100µs 100µs 4.99µs 0.04µs

100µs 10µs 3.95µs 0.04µs

10µs 100000µs 18.95µs 0.13µs

10µs 10000µs 9.48µs 0.08µs

10µs 1000µs 6.31µs 0.06µs

10µs 100µs 4.74µs 0.04µs

10µs 10µs 3.79µs 0.03µs

is on average0.04µs for applications using the standard C
library. This is explicable since whenc is much greater than
r, the timer does not reprotect the page for long stretches of
time, during which the application can access memory without
causing any page faults.

On the other hand, whenr > c, the access time with
METAL is significantly higher since memory accesses are
likely to cause page faults. For a fixedMETAL_TIMER= c, the
overhead is is higher for larger values of ther since infrequent
application memory accesses are likely to witness memory
caching disturbances.

Finally, Table III shows the time that it takes a malicious
adversary to find the landmark pattern in an application that
is running under METAL, under different assumptions for
the value of theMETAL_TIMER (c) and the application’s
memory access rate (r). We see that asr decreases, application
memory becomesmore frequently exposed since high access
rates mean more segmentation faults, which mean that the
page is more likely to be in a decrypted state. Similarly as
c increases, application memory becomes exposedfor longer
stretches since METAL’s timer does not fire immediately after
a memory access causes a segmentation fault.

TABLE III

SECURITY BENEFITS OFMETAL

METAL Access Actual Time Estimated Time

TIMER (c) Rate (r) to crack to crack

100000.00µs 100000.00µs 8.5 hrs 7 hrs

100000.00µs 10000.00µs 51.8 min 40 min

100000.00µs 1000.00µs 4.9 min 4 min

100000.00µs 100.00µs 17.4 sec 17 sec

100000.00µs 10.00µs 3.2 sec 3 sec

10000.00µs 100000.00µs > 1∗ days 3 days

10000.00µs 10000.00µs 8.6 hrs 7 hrs

10000.00µs 1000.00µs 53.7 min 40 min

10000.00µs 100.00µs 4.0 min 4 min

10000.00µs 10.00µs 18.5 sec 19 sec

1000.00µs 100000.00µs > 2
∗ days 28 days

1000.00µs 10000.00µs > 1∗ days 3 days

1000.00µs 1000.00µs 8.8 hrs 7 hrs

1000.00µs 100.00µs 43.1 min 40 min

1000.00µs 10.00µs 4.4 min 4 min

100.00µs 100000.00µs > 3
∗ days 279 days

100.00µs 10000.00µs > 2∗ days 28 days

100.00µs 1000.00µs > 1
∗ days 3 days

100.00µs 100.00µs 7.9 hrs 7 hrs

100.00µs 10.00µs 35.7 min 40 min

10.00µs 100000.00µs > 4
∗ days 2791 days

10.00µs 10000.00µs > 3∗ days 279 days

10.00µs 1000.00µs > 2
∗ days 28 days

10.00µs 100.00µs > 1∗ days 3 days

10.00µs 10.00µs 8.4 hrs 7 hrs

VI. CONCLUSION

METAL is a shim library that permits us to transparently
add memory encryption to existing software, without requiring
complicated software redesign or additional costly hardware.
By adjusting theMETAL_TIMER, users can trade off computa-
tional overhead for greater application data confidentiality and
integrity. Users can effectively leverage METAL to trade off
computational and memory overhead in exchange for memory
confidentiality and integrity.

ACKNOWLEDGMENTS

The authors would like to thank the Stephen E. Smith Center
for Cybercrime, the John Jay College Office of Sponsored
Research, and the Center for Computational Sciences at the
U.S. Naval Research Laboratory for their support of these
research efforts.

REFERENCES

[1] O. Arkin and J. Anderson. Etherleak: Ethernet frame padding information
leakage. http://www.atstake.com/research/ advisories/2003/atstake ether-
leak report.pdf.

[2] J. Chow, B. Pfaff, T. Garnkel, K. Christopher, and M. Rosenblum.
Understanding data lifetime via whole system simulation. In Proceedings
of the 12th USENIX Security Symposium, 2004.



[3] Jim Chow, Ben Pfaff, Tal Garfinkel, Mendel Rosenblum. Shredding Your
Garbage: Reducing Data Lifetime Through Secure Deallocation, 14th
USENIX Security Symposium (Security 2005).

[4] Corey, Joseph Advanced Honey Pot Identification and Exploitation
http://www.phrack.org/fakes/p63/p63-0x09.txt

[5] Cowan, Crispin et al. PointGuardTM: Protecting Pointers From
Buffer Overflow Vulnerabilities http://www.ece.cmu.edu/adrian/630-
f04/readings/cowan-pointguard.pdf

[6] J. Viega. Protecting sensitive data in memory. http://www-
106.ibm.com/developerworks/security/library/ s-data.html

[7] J. Viega and G. McGraw. Building Secure Software. Addison Wesley,
2002.

[8] Coredump hole in imapd and ipop3d in slackware 3.4.
http://www.insecure.org/sploits/slackware.ipop.imap.core.html.

[9] Security Dynamics FTP server core problem.
http://www.insecure.org/sploits/solaris.secdynamics.core.html.

[10] Solaris (and others) ftpd core dump bug.
http://www.insecure.org/sploits/ftpd.pasv.html.

[11] Wu-ftpd core dump vulnerability. http://www.insecure.org/sploits/ftp.coredump2.html
[12] The Honeynet Project. Know your Enemy.

http://www.honeynet.org/papers/sebek.pdf
[13] Information and Communication Theory Group What is Electric Fence?

http://genlab.tudelft.nl/old/html/helpdesk/software/efence/
[14] Dark Overload, Unix Cracking Tips, Phrack Volume Three, Issue 25,

File 5 of 11, March 17, 1989.


