Hiding Your Wares: Transparently Retrofitting
Memory Confidentiality into Legacy Applications

Jamie Levy Bilal Khan
Department of Mathematics and Computer Science
John Jay College of Criminal Justice
New York, NY
Email: {jlevy,bkhart @jjay.cuny.edu

Abstract— Memory scanning is a common technique used by data such as cryptographic keys and passwords should be
malicious programs to read and modify the memory of other zeroed in memory immediately after they are known to be
programs. Guarding programs against such exploits require , |onger needed. Unfortunately, these judicious strategie

memory encryption, which is presently achievable either by(i) . .
re-writing software to make it encrypt sensitive memory conents, too frequently disregarded by application, web browser and

or (i) employing hardware-based solutions. These approdes are WED server programmers. As a consequence, most consumer
complicated, costly, and present their own vulnerabilities. In this software faces increased risk given that sensitive user idat
paper, we describe new secure software technology that erlas exposed in memory once a system has been compromised—
users to transparently add memory encryption to their exising this data can be easily examined by reading the previously

software, without requiring users to invest in costly encrytion fi d device fil induci
hardware or requiring programmers to undertake complicated M€NUONe€d memory device fiies, or inducing memory core

software redesign/redeployment. The Memory Encryption ad dumps [8]-[11] by triggering program bugs. This paper de-
Transparent Aegis Library (METAL) functions as a shim libra ry, scribes a mechanism by which memory confidentiality can be
allowing legacy applications to transparently enjoy an assrance provided transparently to existing legacy applicationsthvy

of memory confidentiality and integrity. The proposed soluton qar themselves, without mandating programmers to redesig
is tunable in terms of trade-offs between security and compu S . L
or even recompile their applications.

tational o_verhead._ We describe the design of the library and
evaluate its benefits and performance trade-offs. Reading/writing application heap memory is the foundation
l. INTRODUCTION of many nefarious gxploits,_as: illustrated by the proIifigWO

M le doi ingin UNIX NIXTO literature published within the hacker community (see
__viany people doing secure programming in U or U ‘e.g. [4], [14]). One illustrative case of this is Joseph G&re
like environments are painfully surprised by the ex!steo_ﬁe paper [4] which targets the Honeynet project’s Sebek imntrus
/ dev_/ mem and / dev/ kimem Toge_ther, these device f'le_sdetection system [12]. Since Sebek is intended to funct®on a
permit the root user to access arbltrgry contents of physi IDS, its effectiveness hinges on remaining hidden froen th
memory and ker.nel memory, respecyvely—byte addresses%uld_be attacker. Corey illustrates that Sebek can bectite
/dc_ev/ em are mterpreted as physmgl memory addressea] searching for particular “landmark” patterns in memory,
while byte addresses ihdev/ kmemare interpreted as kerneland illustrates how by overwriting memory at specific refati

virtual memory addresses. Ther_e IS n_othmg one can do fisets from these patterns, program variables can beedlter
prevent access to these device files, since from a kernel per

. . . q . Unfortu fi"a manner that disables IDS functions. Corey’s attack is
spective, root is omnipresent and omniscient. Unfort W"tejmmune to Address Space Layout Randomization (ASLR)—

the:* ablllty.to read an.d.wnte to arbitrary memory ma k_es. 1 computer security feature which involves arranging the
quite feasible for malicious programs to violate the imiplic

' o X . X ositions of key data areas, usually including the base @f th
memory confidentiality and integrity assumptions made tgfxecutable and position of libraries, heap, and stack g

th%r procglsses. f fidentiality h ved in a process’ address space. By scanning memory contents to
_'Ne problem of memory confl entiality has received Corgyoin relative address information, Corey’s exploit sig@s
siderable recent attention in the context of the study otdda, . Ag| R features supported by many operating systems such
lifetimes” [1]. Data lifetime researchers have noted that g OpenBSD, Adamantix, Hardened Gentoo, Linux (via PaX
application’s sensitive data is often _scattered Widely)mlgh xec Shield, etc.), Windows (via Wehnus, BufferShield,)etc
user and kernel memory, and continues to reside there "this paper we describe a system which dynamically ensrypt

|nde_f|n|te periods of time [2] , evefong after th_e program eap memory, making it nearly impossible for the attacker
terminates. In contrast, our research here considers the prob- find landmark patterns in memory, and hence preventing

lem of application data confidentialitiuring the lifetime of the determination of which location(s) in memory to overwrite.
application; the data lifetime problem is solved as a corollary.

Certain well-established secure software design priesipl
[6] attempt to address application data confidentialityéss The prototype system is called METAL, the Memory En-
For example, it is common knowledge [7] that sensitiveryption and Transparent Aegis Library. METAL is a shim

library which replaces the standard C memory managemearticular, Point Guard protects pointers, but not memory
functions providing transparent run-time encryption objpe contents themselves. It is intended principally to thwéets
allocated memory for both new and existing applications: Oaddress guessing in buffer overflow attacks. In contrast, ou
design objectives are: project is concerned with protecting the actual contents of
1) Simplicity: no specialized hardware is needed. memory buffers from being observed by any process other
2) Transparency: no rewriting or recompiling programs. than the application that owns them.
3) Openness: extensible with new encryption algorithms. Encryption Libraries . There are a large number of existing
4) Performance: dynamic specification of trade-off betweélibraries implementing strong cryptography (e.g. Libnty
performance and security. cryptlib, Xceed, etc.) While these libraries are useful fioo-
Because of the central role of memory scans in secur@j@mmers who wish to design their applications with segurit
exploits, METAL has far reaching potential impact in rechggi €oncerns in mind, the libraries do not provide an easy way
system vulnerabilities based on compromises of applinati® Migrate existing stable but insecure applications. éude

memory confidentiality and integrity. all the libraries we examined were themselves vulnerable to
memory scanning attacks, since they all store their algariit
Il. PRIOR RELATED WORK state information in unprotected heap memory.
There are many projects relate to the subject of memory
encryption or memory access. Here we describe representa- [Il. DESIGN
tives from three broad categories which influence the design\ETAL is designed as a shim library replacing the standard
of METAL. C memory management functions (erml | oc, val | oc,

Memory Debuggers The Efence [13] memory debug-ca | oc, free, cfree, etc.) The shim library memory
ger allows programmers to detect illegal memory accessggycation functions usenmap to allocate a protected page
made during a program's execution. It is designed asi@memory, marking the page as inaccessible for reading and
debugging shim library which overrides the memory allocgiting. Information about memory allocations is maintdn
tion/deallocation functions of the standard C library ider ;, the library internals. When the application attempts to
to facilitate the detection of memory bugs in programs. Thgecess the page for reading and writing, a segmentatiot faul
approach taken is to serve program heap allocation reqbgstg,ccyrs, triggered by a violation of page protections. The
surreptitiously allocating an |nacces§|ble page on e|.thée shim library catches th&l GSEGV signal generated by the
of requested memory. The inaccessible pages contain wothiggmentation fault, unprotects the page whose accessdcause
gnd are created by the Efence program solely in order to trgp fault, decrypts the page contents (in place), and egist
illegal memory accesses. When a program tries to access Rggkem timer usingial ar () . The fault handler then exits,
(or outside) the bounds of its allocated array, it inadvel¥e ang the offending instruction is automatically re-atteetpt
touches one of the inaccessible pages allocated by Efenggs time of course succeeding without causing a fault. When
and this results in a segmentation fault which is caught aggk registered system timer fires, the shim library catches
reported to Fhe programmer. At this pomt_ the programmer C3fle S| GALRM signal generated by timer expiry, re-encrypts
trace back in the core dump to determine the programmafiay outstanding decrypted pages and re-protects them. The
error. Efence therefore provides a transparent mechanim jnain parameter in the operation of the METAL library is
discovering improper memory accesses at program runtimge duration of the re-encryption im&ETAL_TI MER. Note
Efence is relevant to our project because we use a similat the timer is absolutely necessary in the design. The pag
mechanism to allow us to interpose between the program ?&Sjnnot be re-encrypted and re-protected at the very end of
memory. In our case, however, we interpose with the intentighe segmentation fault handler because this would result in
of providing memory confidentiality. _ _another fault when the memory access was re-attempted after

Heap Protection Point Guard takes an important step ifhe handler exits; an infinite stream of faults would resuit.
protection against |Ilegal memory accesses on t_he heap. Thgpe encryption and decryption of a page is implemented in
main idea behind Point Guard is to encrypt pointers. If the manner that is simple, fast and has limited memory exposure
pointers are encrypted, it makes it harder for the attacker ¢ jts own. When the application first starts, the shim ligrar
determine memory addresses to target with malicious Writ€fsnerates a randof® bit key K, which it stores in a register.
Point Guard encrypts a pointer and places it in memory ur(‘ngicryption of a page is carried out word-by-word by doing an
it is needed [S]. When the program calls for the pointer, koR of memory contents with a dynamically generated “pad”
is taken from memory and decrypted to get its real valugy e This pad value is obtained by hashing both the memory
Then the decrypted pointer is handed to the program so thgjjress and the key. For example, if the true (cleartext)eval
it can use the pointer as it would normally. The prograny sqdressd is X, after encryption the content of will be
needs the real value so that it will get the correct address. A- H(A, K). The encryption scheme can thus be viewed

attacker would not be able to get the address in a conveiitioga 5 dynamic randomized Vernam-Mauborgne one-time pad.
manner, because s/he would only have access to the encryﬁﬁgryption is the same as encryption, since

value and not the decrypted (real) value. Though Point Guard
is a step in the right direction, it has its limitations. In XoHAK @HAK)=X00=X.

TABLE |

The key K remains unexposed to memory scans since it is M EMORY OVERHEAD OF METAL

stored in registers and does not enter random access memory.
The simplest (and fastest) hash functions we considered wer

Program | Memory Usage| Memory Usage
HAK) = K with METAL w/o METAL
H(A, K) = K& (A & OXFFFFFFFE vim 1305 pages 743 pages
H(A,K) _ AK mod Ox7FFFFEFE emacs 4990 pages 2574 pages
xterm 1355 pages 2182 pages
In the last scheme OxX7FFFFFER2147483647 is a prime. firefox 18204 pages 9626 pages

IV. ANALYSIS

Suppose that an application uses pages and that the 5 Smple?
secret of interest to the attacker resides on precisely dne o
thesem pages. The application reads/writes (uniformly at
random) to these pages at a cumulative rate of once evaé?
r seconds, so each page is expected to be read from/writfnTyansparent?
to once everyrm seconds. An access exposes the page for

< ¢ =METAL_TI MER seconds, after which METAL's timer into any existing binary which dynamically links to the stan

expires and_ _results n re-encryptlon/re-protectlon O.f plag_e. dard C libraries. This process does not require programioers

The probability that the secret is exposed at any given tHmer'edesign their software to make use of cryptographic liesr

thus at most.. n?r does it require recompiling code with specialized com-
I

Suppose the attacker IS a.ble, to narrow down th.e set ers that embed encryption strategies into the objececod
pages on which the application's sensitive data resides t 8ther, the transition from unsecure memory applications
superset of the actual pages that the application uses. }' e

ttack ©s b ina th h thi of secure memory applications is easy; the scheme can be
altacker operates by cycling throug IS supersep of m retrofitted into existing legacy applications by the endruse
pages, takings seconds to scan each page for the patter

Hemselves—all they have to do is ensure that the METAL

or “Iapdmarks” of interest, in the manner suggested .by.tl?ff)rary is ahead of the standard C libraries in the linkexdler
exploits of Corey and others. At any given time, the prohigpbil LD LI BRARY PATH search path
that the attacker is examining the page with the sought-afte — - '

secret is isl/p. Thus the probability that secret is seen a€. Open?

cleartext by the attacker is at mosf—, and the expected \ve have used very simple hashing schemes to minimize the
time before the attacker uncovers the pageé+5- seconds. computational overhead and neutralize the possibility the.
encryption scheme could itself be attacked through memory
scans. The scheme has the security of a dynamic (albeit algo-
The address space layout randomization feature supporigfmically generated) one-time pad constructed from a ran
by most modern UNIX variants makes the placement of agom key K. In principle, however, any encryption/decryption

plication pages inside dfdev/ memextremely unpredictable. scheme could be substituted into the METAL framework.
In practice, we found no reliable way to enable the attacker

to narrow down the value op. If the attacker is unable to D- Performance?

narrow downp then the only viable strategy is to scan the METAL provides memory confidentiality but presents over-
entire memory, which on a machine witlé of memory (and head costs both in terms of memory footprint and processing
4K -sized pages) means= 524288. We made the application time.

secret detectable through regular expression matching andable | shows the comparative memory resident sizes of
allowed the attacker to use thgg ep utility to search for it four common applications, running with and without METAL.
on each page. In practice, the regular expression searéh tddie blowup in memory footprint for such applications is on
approximatelys = 4.6 x 10~ seconds per page. We set thaverage less than double, approximatel.

METAL timer at 50ns, and gave the applicatiom = 100 Table Il shows the comparative slowdown of memory ac-
pages, with a cumulative access rate 1000 accesses per cesses in applications with and without METAL, for various
second. This figure was determined by assessing the Seliakies of theVETAL_TI MER= ¢ and application access rate
application which accesses its sensitive IP address Vasiab-. Memory accesses using METAL are betwéenand150x
relatively infrequently, only at particular transition ipts in slower than raw memory accesses via the standard C library.
its state. Based on these parameter values, our analysis ilVhenr < ¢, we note that as/c tends to0, the access time
the previous section indicates that the expected time fer tvith METAL approaches the access time without METAL.
attacker to see the secret is on the orderl®d hours. In For example, wherr = 100000us andr = 10us, the time
practice, we found that the attacker was unable to find the access a word memory is (on average}2us for an
secret for well over twice this period of time. application linked with METAL, while the time to access

METAL does not require any specialized hardware to per-
{;n memory encryption.

METAL operates as a shim library, and so can be plugged

V. EXPERIMENTS AND EVALUATION

TABLE Il TABLE Il

COMPUTATIONAL OVERHEAD OF METAL SECURITY BENEFITS OFMETAL
METAL Access Time per accesy Time per access METAL Access Actual Time | Estimated Time
TI MER (c) Rate (r) with METAL w/o METAL TI MER (C) Rate () to crack to crack
100000ps | 100000us 48.7s 0.69us 100000.00ps | 100000.00ps 8.5 hrs 7 hrs
100000ps | 10000us 1.93%us 0.13us 100000.00us | 10000.00us 51.8 min 40 min
100000ps 1000us 0.42us 0.08us 100000.00us | 1000.00us 4.9 min 4 min
100000us 100us 0.2%s 0.06us 100000.00us 100.00us 17.4 sec 17 sec
100000us 10pus 0.22us 0.04us 100000.00us 10.00us 3.2 sec 3 sec
100008 1000005 47.81us 0.33us 10000.00ps | 100000.00us > 1* days 3 days
10000us 10000us 13.5Qus 0.11us 10000.00ps | 10000.00us 8.6 hrs 7 hrs
10000us 1000us 2.62us 0.07us 10000.00us 1000.00us 53.7 min 40 min
100008 100us 1.85us 0.05us 10000.00ps 100.00us 4.0 min 4 min
10000us 10us 1.43us 0.04us 10000.00us 10.00us 18.5 sec 19 sec
1000us 100000us 31.62us 0.21us 1000.00us 100000.00us > 2* days 28 days
1000us 10000us 11.85%us 0.10us 1000.00us 10000.00us > 1* days 3 days
1000us 1000us 7.28us 0.07us 1000.00us 1000.00us 8.8 hrs 7 hrs
1000us 100us 5.26us 0.05us 1000.00us 100.00us 43.1 min 40 min
1000us 10us 4.12us 0.04us 1000.00us 10.00us 4.4 min 4 min
100us 100000us 23.68us 0.16us 100.00us 100000.00us > 3* days 279 days
100us 10000us 10.53:s 0.09us 100.00us 10000.00us > 2* days 28 days
100us 1000us 6.77us 0.06us 100.00us 1000.00us > 1* days 3 days
100us 100us 4.9%us 0.04us 100.00us 100.00us 7.9 hrs 7 hrs
100us 10us 3.95us 0.04us 100.00us 10.00us 35.7 min 40 min
10us 100000us 18.95%us 0.13us 10.00us 100000.00us > 4* days 2791 days
10us 10000us 9.48us 0.08us 10.00us 10000.00us > 3* days 279 days
10us 1000us 6.31us 0.06us 10.00us 1000.00us > 2* days 28 days
10us 100us 4.74us 0.04us 10.00us 100.00us > 1* days 3 days
10us 10us 3.7%s 0.03us 10.00us 10.00us 8.4 hrs 7 hrs

is on average).04us for applications using the standard C VI. CONCLUSION
library. This is explicable since whenis much greater than METAL is a shim library that permits us to transparently
r, the timer does not reprotect the page for long stretches afd memory encryption to existing software, without repgr
time, during which the application can access memory withoeomplicated software redesign or additional costly hargwa
causing any page faults. By adjusting theVETAL_TI MER, users can trade off computa-
On the other hand, when > ¢, the access time with tional overhead for greater application data confidenyiand
METAL is significantly higher since memory accesses afBtegrity. Users can effectively leverage METAL to tradd of
likely to cause page faults. For a fix®ETAL_TI MER= ¢, the computational and memory overhead in exchange for memory
overhead is is higher for larger values of theince infrequent confidentiality and integrity.
application memory accesses are likely to withess memory
caching disturbances.

ACKNOWLEDGMENTS

. . . . The authors would like to thank the Stephen E. Smith Center
Finally, Tablle lll shows the time that'|t takes a.ma'hmou?or Cybercrime, the John Jay College Office of Sponsored
adversary to find the landmark pattern in an application thﬁtesearch and the Center for Computational Sciences at the

is running under METAL, under different assumptions fo[J S N ' .
.. .S. Naval Research Laboratory for their support of these
the value of theMETAL_TI MER (c) and the application’s v y " supp

...~ research efforts.

memory access rate (r). We see that aecreases, application
memory becomesnore frequently exposed since high access REFERENCES
rates mean more segmen.tatlon faults, which mean that Efﬂ;‘io,Arkm and J. Anderson. Etherleak: Ethemet frame praglihformation
page is more likely to be in a decrypted state. Similarly as leakage. http://www.atstake.com/research/ advis@@g8/atstake ether-
c increases, application memory becomes expdeedonger leak report.pdf.

. PP s y e P . 9 éZ] J. Chow, B. Pfaff, T. Garnkel, K. Christopher, and M. Ralskeim.
stretches since METAL's timer does not fire immediately aft

i Understanding data lifetime via whole system simulationPtoceedings
a memory access causes a segmentation fault. of the 12th USENIX Security Symposium, 2004.

[3] Jim Chow, Ben Pfaff, Tal Garfinkel, Mendel Rosenblum. &tting Your
Garbage: Reducing Data Lifetime Through Secure Deallooatil4th
USENIX Security Symposium (Security 2005).

[4] Corey, Joseph Advanced Honey Pot Identification and @&iqiion
http://www.phrack.org/fakes/p63/p63-0x09.txt

[5] Cowan, Crispin et al. PointGuardTM: Protecting PoisteFrom
Buffer Overflow Vulnerabilities http://www.ece.cmu.edwdrian/630-
fo4/readings/cowan-pointguard.pdf

[6] J. Viega. Protecting sensitve data in memory. httpMiw
106.ibm.com/developerworks/security/library/ s-datial

[7] J. Viega and G. McGraw. Building Secure Software. Addist/esley,
2002.

[8] Coredump hole in imapd and ipop3d in slackware 3.4.
http://www.insecure.org/sploits/slackware.ipop.inepe.html.

[9] Security Dynamics FTP server core problem.
http://www.insecure.org/sploits/solaris.secdynantiase. html.

[10] Solaris (and others) ftpd core dump bug.
http://www.insecure.org/sploits/ftpd.pasv.html.

[11] Wu-ftpd core dump vulnerability. http://www.inse@uorg/sploits/ftp.coredump?2.html

[12] The Honeynet Project. Know your Enemy.
http://www.honeynet.org/papers/sebek.pdf

[13] Information and Communication Theory Group What isdilie Fence?
http://genlab.tudelft.nl/old/html/helpdesk/softwaatence/

[14] Dark Overload, Unix Cracking Tips, Phrack Volume Thréssue 25,
File 5 of 11, March 17, 1989.

