Petrifying Worm Cultures: Scalable Detection and
Immunization in Untrusted Environments

Joel O. Sandin Bilal Khan
Department of Computer Science Department of Mathematics and Computer Science
Stanford University John Jay College of Criminal Justice
Stanford, CA New York, NY
Email: jsandin@cs.stanford.edu Email: bkhan@jjay.cuny.edu

Abstract— We present and evaluate the design of a new and A comprehensive solution must detect new worms and

comprehensive solution for automated worm detection and immu- rapidly provide an active response without human intergent
nization. The system engages a peer-to-peer network of untsted

machines on the Internet to detect new worms and facilitate apid II. PRIOR AND RELATED WORK

preventative response. We evaluate the efficacy and scaldityi . .

of the proposed system through large-scale simulations and A number of systems for detecting and responding to worm
assessments of a functional real-world prototype. We find tht threats have been proposed in the literature.

the system enjoys scalablity in terms of network coverageatilt- Detection systemsfollow a model similar to [4] which
tolerance, security, and maintainability. It proves effetive against uses a “network telescope” — large, unallocated blocks of IP
new worms, and supports collaboration among among mutually ;
mistrusting parties. adgiresses — to captura scan traffic and thus detect worms
quickly. However, passive detection allows only the crades
l. INTRODUCTION form of active response—all clients must be denied access to
the vulnerable service until it has been secured. In additio
Since the late 90s, computer worms have attacked tbeéllaborative detectors of this form require total trustcamg
consumer community with alarming regularity, e.g. Melissall participants.
(1999), Code Red (2001), Slammer (2003), Blaster (2003),Throttling solutions use local network anomaly detection
Sasser (2004), etc. Although the economic impact of thege identify infected machines, and react by throttling and
attacks already exceeds billions of dollars, we still haee nisolating misbehaving hosts to control the spread of worms
proven antidote against emergent worms and remain vulneyigthout affecting the traffic of uninfected machines [5]x&m
ble to the dangers they pose. et. al. [6] give a complete and practical system that uses
Network worms spread by using the Internet to acceasomaly detection to prevent infected machines from iifgct
services with exploitable vulnerabilities. Newly “infect” other hosts on the local network. Since they work by con-
hosts serve as a stepping stone, advancing the infection gtling infections at thesource however, the effectiveness of
ponentially and potentially leading to thousands of vulitde these schemes relies of wide-scale deployment.
hosts becoming compromised in a very short time. Content filtering solutions, in contrast, stop infections at
Since worms are largely static in their propagation stratéhe destination Signature systems such as EarlyBird [7] and
gies, an attack against a vulnerable host typically follaws Autograph [8] observe flows from infected machines, idgntif
predictable pattern osignature Modern intrusion detection blocks common across many of those flows, and dynamically
systems (IDS) such as Bro [1] and Snort [2] leverage thigeate IDS signatures to enable content filtering. Howener,
fact: by matching the ports and byte sequences of incomiogder to generate signatures a source of malicious flows is
traffic to specific signatures, they can identify worm trafficequired. Autograph [8] presented a solution to the problem
as it arrives, and prevent the vulnerable services fromngeeiof obtaining malicious flows rapidly, but their scheme regsi
virulent packets. a large deployment and total trust among the participants.
While signatures-based IDSes are useful against knowhe Honeycomb project [9] collects malicious flows through
threats, they remain impotent against new worms becaude weledium interaction honeypots to facilitate automatic aigre
designed network worms can propagate much more quicldgneration, but does not address the problem of rapid worm
than signatures can be generated. Most commercial produdétection among mutually mistrusting participants.
rely on hand-generated signatures, a labor-intensiveegsoc Active response honeypot-based systensuch as Au-
that takes on the order of hours or days. In constrast, modéopatching [10] and Vigilante [11], use instrumented hoeney
worms spread exponentially fast (e.g. the Slammer worpots to detect buffer overflows and develop deployable fixes
[3] doubled its number of infections every 8.5 seconds ardr previously unknown vulnerabilities. These systemswll
infected more than 90 percent of vulnerable hosts within articipants toverify the existence of a threat locally, thus
minutes). minimizing the trust in the system. However, they speciljcal



target overflow-based vulnerabilities, and may fail to detewhich can be locally verified using honeypots. The system
worms that spread via other attack vectors. maximizes participation by minimizing trust required argon
The Collapsar honeyfarm system [12] uses a centraliztite participants.
collection of virtual honeypots for cost-effective monitwm Conceptually, the honeypot community acts as a “petri dish”
and event correlation. The Potemkin honeyfarm [13] usésr worms. The distribution of sensors ensures that thisi pet
a modified Xen [14] to run hundreds of high-interactiomlish is a microcosm reflecting worm demographics in the
honeypots on a single physical server, thus making honeymaternet at large. The relatively small size of the petrihdis
deployment significantly cheaper. These systems do not cimensifies the rate at which infections percolate, allavin
sider automatic worm detection, and are designed to operatgomated antidote generation to become feasible well in
within a single administrative domain. advance of the time when the infection disables the ambient
The idea of collaborative intrusion detection is not newg-Ye larger network.
neswaran, gt. al. make a strong case for collaborativesj'mnru_ If you see this in the map of my microcosm, follows
detection Wlth The DOMINO System [15], by dempnstratlng it that | am known well enough too? — Coriolanus
that blacklists can be constru_cted much more quickly using (ShakespeareShe Tragedy of Coriolan(is
a large-scale IDS. The Worminator system [16] uses shared
alerts from distributed IDS elements to detect an attack in IV. DESIGN
progress. However, the veracity of shared alerts is diffital
verify in such schemes; participants are required to trmet o We now describe the components and functions of the
another. system in more detail.
Sensorsare machines that are configured to send “un-
Il ARCHITECTURAL OVERVIEW wanted” traffic to a honeypot. Unwanted traffic is any traffic
There are many challenges in developing a scalable alifiéit would otherwise be dropped by the sensor, or anything
comprehensive solution. We must be able to detect worrsgecific that sensor is configured to ignore. Examples irclud
early before they become widespread. A system that provid¢zsolicited connections (TCP SYN packets), UDP packets to
an active response must be accurate: there should be umwised ports, incoming ICMP requests, and so on, all of which
false negatives (no worms should go undetected) and no fafge sent to a honeypot by means of an SSL tunnel. Sensors
positives (since network messages misdiagnosed as wong cheap since existing machines and firewalls at the friont o
can cause denied service). Automatically generated countéie network can be configured to route unwanted traffic for
measures must be fully tested and guaranteed to be effectiv@ny IP addresses to distinct honeypots.
The proposed technique must be general, not only in catchingHoneypots are machines with known vulnerabilities de-
known worms, but also new worms that may be engineerptbyed in the network to learn about attackers’ motivations
to evade or subvert the system. The system must be practieaid techniques. In our system, participants are free to de-
reliable, easily deployed and maintained. ploy honeypots in any configuration, but for detection of
In addition to these challenges, a serious obstacklap- new worms we expect that honeypots will be up-to-date on
tion: a detector is not effective unless it is deployed in the firpatches and thus only exploitable via previously unknown
place. Network worms are fast enough to overrun any detectarnerabilities. Specifically, participants will deplopheypots
deployed in a single administrative domain, thus making thier services they are interested in protecting. Each hooeyp
case for a distributed, collaborative detector; howewatabo- needs an associated manager process that is responsible for
ration that requires a high degree of trust among parti¢ipen communicating with other hosts via the overlay network,
unlikely to be deployed, hence our goal to maximize coveragetting up tunnels with sensors and other managers, rexprdi
in the network, while minimizing trust. outbound traffic, and generating signatures when infection
Our system works as follows: a set s€nsormachines and occurs. If the honeypot is implemented using virtualizatio
honeypotmachines are (voluntarily) deployed throughout thtechnology like VMWare [17] or Xen [18], then it can reside
Internet. The sensors divert all unsolicited traffic by talling on the same physical machine as the manager. Though de-
it to one or more honeypots. If a worm successfully infects ploying honeypots is more expensive than deploying sensors
honeypot, it will attempt to make outgoing infection atteémp honeypots allow the contributor to observe infections on a
to propagate itself. The host honeypot, however, tunnéls alachine they control and thus obtain conclusive proof of a
outgoing attacksowards other honeypat©nce many honey- threat.
pots have been infected, a signature can be developed, @and thinterconnectivity. When a sensor/honeypot joins the sys-
people administering these honeypots learn of the plattorch tem, it builds tunnels to honeypots by contacting its manage
services affected by the worm and the signatures developadd negotiating the details of the tunnel interface (e.@. pr
Our system is designed to be transparently distributedsacroate IP addresses, routes, IP address of the honeypotg traffi
multiple networks, allowing participants everywhere tanjo policies, encryption). We assume honeypots are heterogsne
A machine can join the system by becoming a sensor oraad leave it to the people deploying the sensors/honeypots t
honeypot. In contrast to prior efforts, participants in syustem decide what kind of "personality” they will have. Our system
share actual infections (rather than just sharing inforomdt uses the Chord [19] distributed hash table lookup primitore



sensors/honeypots to locate honeypots on a particuldopiat necessarily trust each other. Given the tremendous damages
or hosting a particular service. caused by worm outbreaks in recent years and the inevitabili

Routing into honeypots By manipulating iptables rules we of further attacks, we believe many will heed to the call for
DNAT the address on unwanted traffic for the sensor towardsntribution to worm detection, provided that the techeidg
the address of the honeypot, forwarding the packet over thafe, effective, non-intrusive, and easy to deploy.
tunnel to the honeypot's manager. Many current worms (e.g.Accurate diagnosis The best way to diagnose worms is to
Blaster and Sasser) require the infected host to make frasatch them in action. By "culturing” the worms within the
TCP connections to the infector to retrieve the executabi®neypot network, this approach gives conclusive evidefice
that comprises the bulk of the worm’s logic. By configuring threat to all members of the system. This approach does not
the sensor like a masquerading firewall for the honeypot, thenerate any false negatives or positives, because it atthc
sensor can proxy some connections from the honeypot athé worm if and only if it is infectious.
allow it to communicate with the infector. Automatic generation of fully-tested responsesWe au-

Routing out of honeypots It is obvious to the honeypot tomatically generate the signature using the method deestri
manager when a honeypot has been infected: suddenly tiyeKim and Karp [8]. More importantly, our honeypots allow
largely inactive honeypot begins making many outgoing cons to test the signature immediately by seeing if it guarés th
nections per second to random IP addresses. To spread ittfiectious message sent to other honeypots. We can vesgty th
infection, within the petri culture, these infection atifgmare the signature works if it stops the worm from propagating.
re-routed to other honeypots. Each outbound infectionrgite  Fast distribution of responses The speed of worm prop-
(originally destined for a random IP address) is DNATed imagation is harnessed to a healthy end: rapid disseminafion o
stead to a randomly chosen honeypot over a tunnel estattlismews of an infection. Any individual or organization owniag
by the corresponding honeypot managers. The target hoheyponeypot can directly observe the effect of the worm as well
manager acts as a masquerading firewall for the infector, aasithe effectiveness of the generated signature to haltahe fl
source NATs traffic from itself so that it appears to be cominghose who own only sensors can still benefit by querying their
from target. peers to learn about the threat and response reliably.

Active ResponseOnce the infection has spread among the Prevention of False-PositivesWe believe that the use of
honeypots, each associated manager has undeniableylodadineypots in our system is an effective safeguard agailss fa
observable evidence of a threat. This information is easy positives since honeypots infecting other honeypots ditess
trust because it has been observed using resources thatcieclusive evidence of a threat. Since our system provides
manager controls. In addition, the honeypot manager has ddeal verificationof a worm, malicious participants cannot fool
served many details about the infection, including the eont other members of the system. Users who don't have honeypots
of any traffic the worm might generate on the network. Thean trust that there is a threat only if it is confirmed by a
particular choice of active response mechanism is orthalgomajority of randomly selected honeypots.
to the design of our system; previous work has showed thatThwarting Malicious Participants . As our system relies on
one can generate a signature [8] by taking many observemllaboration, we need to guard against both malfunctignin
infections, breaking the associated traffic flows into pgececomponents and compromised or malicious participants (e.g
and identifying subsegments which occur with high freqyensensors malfunctioning if they fall victim to a worm attack)
across multiple flows. In our system a honeypot manag€ompromised components may deliberately lie to other garti
gueries a (small) random set of peer honeypots, retriewais thipants but signature generation is not susceptible to thlisss
observed flows, and uses these to attempt generation o anajority of participants are malicious. Participants who
signature. Even if some number of participants are mal&ioyjoin solely to learn more about the system can only acquire
they cannot significantly influence the signature genematidimited knowledge of sensors/honeypot locations sinceéheac
Once a signature has been generated, its effectiveness garticipant only knows a small a number of other particigant
be tested using the live copy of the worm that has bedémthe overlay.
captured. To deploy the signature, the honeypot manager
simply needs to augment the IDSes it controls. While sensors
lack the resources to observe an infection locally, they canWe have written a discrete-time event simulator to measure
each periodically query a random set of honeypot monitoithie efficacy of theculturing approach to worm detection
retrieve observed flows to learn the nature of the threat, andder various parameters. The simulation considers a net-
generate a signature using the same techniques as the lmbnewprk consisting ofS sensors,H honeypots, and ordinary
monitors. machines. Each sensor (resp. honeypot) knows only a small
set of FEED_HP (resp.PEER_HP) honeypots. Each of these
S + H + O machines is “vulnerable” to the worm with a

Open, peer-to-peer with low trust assumptions Our probability VULN PROB. Initially, a set of | NI TI AL_POP
approach uses a simple, peer-to-peer algorithm that cattdetvorms are instantiated on distinct randomly chosen mashine
a worm outbreak in its early stage by harnessing computevery SCAN_PERI OD seconds, each worm hurls itself to-
cycles donated by individuals and corporations that may netirds an IP address which is taken to be in the set of

VI. SIMULATION DESIGN AND EXPERIMENTS

V. KEY FEATURES
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randomly chosen honeypot. If the source of the worm is an
ordinary machine, then the destination is simply taken t@ be
random machine. Finally, if the destination of the transiois o .
happens to be both vulnerable and uninfected, a new cd%? sensitivity of the system to varying number of sensors,
of the worm is instantiated there. While the parameters aygder fixed vulnerable population sizes 1", 5 - 10°, and

adjustable in our simulation environment, we fix them at thi)’- Each graph plots the response time of the system as the
realistic values listed in Table I; changing these valuessdoUMPer of sensors increases.
not alter the qualitative aspects of our conclusions.

Figures 1 and 2 illustrate how altering the density of
sensors influences the time it takes the honeypot communityOur analysis allows us to answer three questions: What
to generate an antidote. is the behavior of the system as the ratio of sensors to

In Figure 1, we consider a system of a fixed number ofulnerable machines increases? How does performance of
H = 1000 honeypots. We vary the sensor density frof to culturing decrease as the number of honeypots increase$? An
95% and plot the extent to which the infection has spread HWinally, what is the response time of the system for various
the time all honeypots have acquired the antidote. For el@mppopulation sizes as the number of sensors increases?
if 25% of the 10* node network are sensors, then less th#n Figure 1 shows the asymptotic behavior of the system as
of the machines have been infected by the time all honeypsensor density approaches one in the system. A densiy of
have developed an antidote. We repeat this experiment fmercent catches an initial infection quickly enough to wrdt
networks havingl0%, 3.5-10%, 5-10°, 7.5-10° and10® nodes the worm among the honeypots before more thaercent of
and show each scenario as a separate curve. vulnerable machines have been infected. For larger pdpuolat

In Figure 2, we consider a system where the number sizes — those greater th&6000 machines — a sensor density
honeypots varies froml00 to 100000, and plot the time, greater thars0 percent yields little return in terms of response
measured from the first infection, that is needed to comigletdime of the system30% seems prohibitively large; however,
culture the worm among the honeypots under varying numbg&nce sensors can be deployed using one physical router to
of honeypot peers. In this simulation, each honeypot spreadonitor large blocks of unused IP addresses, we believe the
infections only to adjacent peers. For example, in a systegpst is acceptable.
with 8000 honeypots, with each honeypot spreading infections Figure 3 confirms our expectation that response time de-
to 8 peers, the total time to culture the infection among thereasedinearly as the number of sensors increases; this is
honeypots i9 seconds. expected, as each scan has a constant probability of hating

In Figure 3, we fix the number of honeypots, and measusegle monitored IP address.

Analysis Conclusions



PEER_HP
SENSCRS
HONEYPOTS

TABLE Il
ACCEPTABLEVALUES

yi}
30000
1000

Fraction of Vulnerable Machines Infected as Vulnerable Population Increases: Recommended Values
0.01[g

sensors: 30000 ——
0.009

0.008
0.007
0.006

0.005

0.004

0.003 -

0.002

0.001

i}

L
90000 100000

L L L ! L
40000 50000 60000 70000 80000

Number of Vulnerable Machines

0 L L
10000 20000 30000

Fig. 4. Simulation Results Under Acceptable Values

among distinct flows, and as described in the paper, choese th
most frequently occuring blocks as likely signatures. Onwee
have a signature, we use the snort-inline [20] tool to irteg

on all network traffic, and statefully inspect and kill flowfs i
they contain specified content.

To test our system, we deployed 8 Windows XP honeypots
and deployed 1 sensor on a DSL connection. Our goal was
to immunize our system against a worm taken from the wild.
The local network was very active, and the worms that we
targeted could be caught in under a minute in most cases.

For example, we caught several variants of the Blaster
(2003), a worm which exploits a vulnerability in Microsaft’
DCOM RPC interface in Windows 2000/XP. We observed the
worm making several types of connections as it spread. &last
uses a buffer overflow to execute a small piece of shell code,
which then downloads the rest of the worm code from the
infecting host via TFTP. After observing multiple connecis,
our automated signature generator created signatureséor t
worm. When used with Snort-inline [20], they proved effeeti
in preventing uninfected honeypots from being infectedhso
thing we could test immediately using a live copy of the worm.

Figure 2 shows the overhead of culturing worms as numbkrcomparing our signatures to their published equivalemés
of honeypot participants grows is quite low, even with a $madlso noted a significant overlap. These results show ouesyst

infection out-degree among participants. Clearly, cutigir

is capable of generating effective signatures.

leverages the epidemic properties of worms to spread news

of the threat quickly among all participants.
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