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Abstract— We present and evaluate the design of a new and
comprehensive solution for automated worm detection and immu-
nization. The system engages a peer-to-peer network of untrusted
machines on the Internet to detect new worms and facilitate rapid
preventative response. We evaluate the efficacy and scalability
of the proposed system through large-scale simulations and
assessments of a functional real-world prototype. We find that
the system enjoys scalablity in terms of network coverage, fault-
tolerance, security, and maintainability. It proves effective against
new worms, and supports collaboration among among mutually
mistrusting parties.

I. I NTRODUCTION

Since the late 90s, computer worms have attacked the
consumer community with alarming regularity, e.g. Melissa
(1999), Code Red (2001), Slammer (2003), Blaster (2003),
Sasser (2004), etc. Although the economic impact of these
attacks already exceeds billions of dollars, we still have no
proven antidote against emergent worms and remain vulnera-
ble to the dangers they pose.

Network worms spread by using the Internet to access
services with exploitable vulnerabilities. Newly “infected”
hosts serve as a stepping stone, advancing the infection ex-
ponentially and potentially leading to thousands of vulnerable
hosts becoming compromised in a very short time.

Since worms are largely static in their propagation strate-
gies, an attack against a vulnerable host typically followsa
predictable pattern orsignature. Modern intrusion detection
systems (IDS) such as Bro [1] and Snort [2] leverage this
fact: by matching the ports and byte sequences of incoming
traffic to specific signatures, they can identify worm traffic
as it arrives, and prevent the vulnerable services from seeing
virulent packets.

While signatures-based IDSes are useful against known
threats, they remain impotent against new worms because well-
designed network worms can propagate much more quickly
than signatures can be generated. Most commercial products
rely on hand-generated signatures, a labor-intensive process
that takes on the order of hours or days. In constrast, modern
worms spread exponentially fast (e.g. the Slammer worm
[3] doubled its number of infections every 8.5 seconds and
infected more than 90 percent of vulnerable hosts within 10
minutes).

A comprehensive solution must detect new worms and
rapidly provide an active response without human intervention.

II. PRIOR AND RELATED WORK

A number of systems for detecting and responding to worm
threats have been proposed in the literature.

Detection systemsfollow a model similar to [4] which
uses a “network telescope” – large, unallocated blocks of IP
addresses – to capture scan traffic and thus detect worms
quickly. However, passive detection allows only the crudest
form of active response—all clients must be denied access to
the vulnerable service until it has been secured. In addition,
collaborative detectors of this form require total trust among
all participants.

Throttling solutions use local network anomaly detection
to identify infected machines, and react by throttling and
isolating misbehaving hosts to control the spread of worms
without affecting the traffic of uninfected machines [5]. Paxton
et. al. [6] give a complete and practical system that uses
anomaly detection to prevent infected machines from infecting
other hosts on the local network. Since they work by con-
trolling infections at thesource, however, the effectiveness of
these schemes relies of wide-scale deployment.

Content filtering solutions, in contrast, stop infections at
the destination. Signature systems such as EarlyBird [7] and
Autograph [8] observe flows from infected machines, identify
blocks common across many of those flows, and dynamically
create IDS signatures to enable content filtering. However,in
order to generate signatures a source of malicious flows is
required. Autograph [8] presented a solution to the problem
of obtaining malicious flows rapidly, but their scheme requires
a large deployment and total trust among the participants.
The Honeycomb project [9] collects malicious flows through
medium interaction honeypots to facilitate automatic signature
generation, but does not address the problem of rapid worm
detection among mutually mistrusting participants.

Active response honeypot-based systemssuch as Au-
topatching [10] and Vigilante [11], use instrumented honey-
pots to detect buffer overflows and develop deployable fixes
for previously unknown vulnerabilities. These systems allow
participants toverify the existence of a threat locally, thus
minimizing the trust in the system. However, they specifically



target overflow-based vulnerabilities, and may fail to detect
worms that spread via other attack vectors.

The Collapsar honeyfarm system [12] uses a centralized
collection of virtual honeypots for cost-effective monitoring
and event correlation. The Potemkin honeyfarm [13] uses
a modified Xen [14] to run hundreds of high-interaction
honeypots on a single physical server, thus making honeypot
deployment significantly cheaper. These systems do not con-
sider automatic worm detection, and are designed to operate
within a single administrative domain.

The idea of collaborative intrusion detection is not new. Yeg-
neswaran, et. al. make a strong case for collaborative intrusion
detection with The DOMINO System [15], by demonstrating
that blacklists can be constructed much more quickly using
a large-scale IDS. The Worminator system [16] uses shared
alerts from distributed IDS elements to detect an attack in
progress. However, the veracity of shared alerts is difficult to
verify in such schemes; participants are required to trust one
another.

III. A RCHITECTURAL OVERVIEW

There are many challenges in developing a scalable and
comprehensive solution. We must be able to detect worms
early before they become widespread. A system that provides
an active response must be accurate: there should be no
false negatives (no worms should go undetected) and no false
positives (since network messages misdiagnosed as worms
can cause denied service). Automatically generated counter-
measures must be fully tested and guaranteed to be effective.
The proposed technique must be general, not only in catching
known worms, but also new worms that may be engineered
to evade or subvert the system. The system must be practical,
reliable, easily deployed and maintained.

In addition to these challenges, a serious obstacle isadop-
tion: a detector is not effective unless it is deployed in the first
place. Network worms are fast enough to overrun any detector
deployed in a single administrative domain, thus making the
case for a distributed, collaborative detector; however, collabo-
ration that requires a high degree of trust among participants is
unlikely to be deployed, hence our goal to maximize coverage
in the network, while minimizing trust.

Our system works as follows: a set ofsensormachines and
honeypotmachines are (voluntarily) deployed throughout the
Internet. The sensors divert all unsolicited traffic by tunnelling
it to one or more honeypots. If a worm successfully infects a
honeypot, it will attempt to make outgoing infection attempts
to propagate itself. The host honeypot, however, tunnels all
outgoing attackstowards other honeypots. Once many honey-
pots have been infected, a signature can be developed, and the
people administering these honeypots learn of the platformand
services affected by the worm and the signatures developed.
Our system is designed to be transparently distributed across
multiple networks, allowing participants everywhere to join.
A machine can join the system by becoming a sensor or a
honeypot. In contrast to prior efforts, participants in oursystem
share actual infections (rather than just sharing information)

which can be locally verified using honeypots. The system
maximizes participation by minimizing trust required among
the participants.

Conceptually, the honeypot community acts as a “petri dish”
for worms. The distribution of sensors ensures that this petri
dish is a microcosm reflecting worm demographics in the
Internet at large. The relatively small size of the petri dish
intensifies the rate at which infections percolate, allowing
automated antidote generation to become feasible well in
advance of the time when the infection disables the ambient
larger network.

If you see this in the map of my microcosm, follows
it that I am known well enough too? – Coriolanus
(Shakespeare’sThe Tragedy of Coriolanus)

IV. D ESIGN

We now describe the components and functions of the
system in more detail.

Sensors are machines that are configured to send “un-
wanted” traffic to a honeypot. Unwanted traffic is any traffic
that would otherwise be dropped by the sensor, or anything
specific that sensor is configured to ignore. Examples include
unsolicited connections (TCP SYN packets), UDP packets to
unused ports, incoming ICMP requests, and so on, all of which
are sent to a honeypot by means of an SSL tunnel. Sensors
are cheap since existing machines and firewalls at the front of
the network can be configured to route unwanted traffic for
many IP addresses to distinct honeypots.

Honeypots are machines with known vulnerabilities de-
ployed in the network to learn about attackers’ motivations
and techniques. In our system, participants are free to de-
ploy honeypots in any configuration, but for detection of
new worms we expect that honeypots will be up-to-date on
patches and thus only exploitable via previously unknown
vulnerabilities. Specifically, participants will deploy honeypots
for services they are interested in protecting. Each honeypot
needs an associated manager process that is responsible for
communicating with other hosts via the overlay network,
setting up tunnels with sensors and other managers, recording
outbound traffic, and generating signatures when infection
occurs. If the honeypot is implemented using virtualization
technology like VMWare [17] or Xen [18], then it can reside
on the same physical machine as the manager. Though de-
ploying honeypots is more expensive than deploying sensors,
honeypots allow the contributor to observe infections on a
machine they control and thus obtain conclusive proof of a
threat.

Interconnectivity . When a sensor/honeypot joins the sys-
tem, it builds tunnels to honeypots by contacting its manager
and negotiating the details of the tunnel interface (e.g. pri-
vate IP addresses, routes, IP address of the honeypot, traffic
policies, encryption). We assume honeypots are heterogeneous
and leave it to the people deploying the sensors/honeypots to
decide what kind of ”personality” they will have. Our system
uses the Chord [19] distributed hash table lookup primitivefor



sensors/honeypots to locate honeypots on a particular platform
or hosting a particular service.

Routing into honeypots. By manipulating iptables rules we
DNAT the address on unwanted traffic for the sensor towards
the address of the honeypot, forwarding the packet over the
tunnel to the honeypot’s manager. Many current worms (e.g.
Blaster and Sasser) require the infected host to make fresh
TCP connections to the infector to retrieve the executable
that comprises the bulk of the worm’s logic. By configuring
the sensor like a masquerading firewall for the honeypot, the
sensor can proxy some connections from the honeypot and
allow it to communicate with the infector.

Routing out of honeypots. It is obvious to the honeypot
manager when a honeypot has been infected: suddenly the
largely inactive honeypot begins making many outgoing con-
nections per second to random IP addresses. To spread the
infection, within the petri culture, these infection attempts are
re-routed to other honeypots. Each outbound infection attempt
(originally destined for a random IP address) is DNATed in-
stead to a randomly chosen honeypot over a tunnel established
by the corresponding honeypot managers. The target honeypot
manager acts as a masquerading firewall for the infector, and
source NATs traffic from itself so that it appears to be coming
from target.

Active Response. Once the infection has spread among the
honeypots, each associated manager has undeniable, locally
observable evidence of a threat. This information is easy to
trust because it has been observed using resources that the
manager controls. In addition, the honeypot manager has ob-
served many details about the infection, including the content
of any traffic the worm might generate on the network. The
particular choice of active response mechanism is orthogonal
to the design of our system; previous work has showed that
one can generate a signature [8] by taking many observed
infections, breaking the associated traffic flows into pieces,
and identifying subsegments which occur with high frequency
across multiple flows. In our system a honeypot manager
queries a (small) random set of peer honeypots, retrieves their
observed flows, and uses these to attempt generation of a
signature. Even if some number of participants are malicious,
they cannot significantly influence the signature generation.
Once a signature has been generated, its effectiveness can
be tested using the live copy of the worm that has been
captured. To deploy the signature, the honeypot manager
simply needs to augment the IDSes it controls. While sensors
lack the resources to observe an infection locally, they can
each periodically query a random set of honeypot monitors,
retrieve observed flows to learn the nature of the threat, and
generate a signature using the same techniques as the honeypot
monitors.

V. K EY FEATURES

Open, peer-to-peer with low trust assumptions. Our
approach uses a simple, peer-to-peer algorithm that can detect
a worm outbreak in its early stage by harnessing computer
cycles donated by individuals and corporations that may not

necessarily trust each other. Given the tremendous damages
caused by worm outbreaks in recent years and the inevitability
of further attacks, we believe many will heed to the call for
contribution to worm detection, provided that the technique is
safe, effective, non-intrusive, and easy to deploy.

Accurate diagnosis. The best way to diagnose worms is to
watch them in action. By ”culturing” the worms within the
honeypot network, this approach gives conclusive evidenceof
a threat to all members of the system. This approach does not
generate any false negatives or positives, because it will catch
the worm if and only if it is infectious.

Automatic generation of fully-tested responses. We au-
tomatically generate the signature using the method described
by Kim and Karp [8]. More importantly, our honeypots allow
us to test the signature immediately by seeing if it guards the
infectious message sent to other honeypots. We can verify that
the signature works if it stops the worm from propagating.

Fast distribution of responses. The speed of worm prop-
agation is harnessed to a healthy end: rapid dissemination of
news of an infection. Any individual or organization owninga
honeypot can directly observe the effect of the worm as well
as the effectiveness of the generated signature to halt the flow.
Those who own only sensors can still benefit by querying their
peers to learn about the threat and response reliably.

Prevention of False-Positives. We believe that the use of
honeypots in our system is an effective safeguard against false
positives since honeypots infecting other honeypots constitutes
conclusive evidence of a threat. Since our system provides
local verificationof a worm, malicious participants cannot fool
other members of the system. Users who don’t have honeypots
can trust that there is a threat only if it is confirmed by a
majority of randomly selected honeypots.

Thwarting Malicious Participants . As our system relies on
collaboration, we need to guard against both malfunctioning
components and compromised or malicious participants (e.g.
sensors malfunctioning if they fall victim to a worm attack).
Compromised components may deliberately lie to other partic-
ipants but signature generation is not susceptible to this unless
a majority of participants are malicious. Participants who
join solely to learn more about the system can only acquire
limited knowledge of sensors/honeypot locations since each
participant only knows a small a number of other participants
in the overlay.

VI. SIMULATION DESIGN AND EXPERIMENTS

We have written a discrete-time event simulator to measure
the efficacy of theculturing approach to worm detection
under various parameters. The simulation considers a net-
work consisting ofS sensors,H honeypots, andO ordinary
machines. Each sensor (resp. honeypot) knows only a small
set ofFEED_HP (resp.PEER_HP) honeypots. Each of these
S + H + O machines is “vulnerable” to the worm with a
probability VULN_PROB. Initially, a set ofINITIAL_POP
worms are instantiated on distinct randomly chosen machines.
Every SCAN_PERIOD seconds, each worm hurls itself to-
wards an IP address which is taken to be in the set of



FEED_HP 2
PEER_HP 8
VULN_PROB 0.99
SCAN_PERIOD 0.05
INITIAL_POP 1000

TABLE I

SIMULATION PARAMETERS
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Fig. 1. Complete Simulation Results

sensor/honeypot/ordinary machines with probability(S +O+
M)/232. If the source of the worm is a honeypot or sensor,
then tunnelling is simulated by taking the destination to bea
randomly chosen honeypot. If the source of the worm is an
ordinary machine, then the destination is simply taken to bea
random machine. Finally, if the destination of the transmission
happens to be both vulnerable and uninfected, a new copy
of the worm is instantiated there. While the parameters are
adjustable in our simulation environment, we fix them at the
realistic values listed in Table I; changing these values does
not alter the qualitative aspects of our conclusions.

Figures 1 and 2 illustrate how altering the density of
sensors influences the time it takes the honeypot community
to generate an antidote.

In Figure 1, we consider a system of a fixed number of
H = 1000 honeypots. We vary the sensor density from5% to
95% and plot the extent to which the infection has spread by
the time all honeypots have acquired the antidote. For example,
if 25% of the104 node network are sensors, then less than1%
of the machines have been infected by the time all honeypots
have developed an antidote. We repeat this experiment for
networks having104, 3.5 ·105, 5 ·105, 7.5 ·105 and105 nodes
and show each scenario as a separate curve.

In Figure 2, we consider a system where the number of
honeypots varies from100 to 100000, and plot the time,
measured from the first infection, that is needed to completely
culture the worm among the honeypots under varying number
of honeypot peers. In this simulation, each honeypot spreads
infections only to adjacent peers. For example, in a system
with 8000 honeypots, with each honeypot spreading infections
to 8 peers, the total time to culture the infection among the
honeypots is9 seconds.

In Figure 3, we fix the number of honeypots, and measure
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Fig. 2. Culturing Simulation Results
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Fig. 3. Sensor Simulation Results

the sensitivity of the system to varying number of sensors,
under fixed vulnerable population sizes of105, 5 · 105, and
106. Each graph plots the response time of the system as the
number of sensors increases.

A. Analysis Conclusions

Our analysis allows us to answer three questions: What
is the behavior of the system as the ratio of sensors to
vulnerable machines increases? How does performance of
culturing decrease as the number of honeypots increases? And
finally, what is the response time of the system for various
population sizes as the number of sensors increases?

Figure 1 shows the asymptotic behavior of the system as
sensor density approaches one in the system. A density of30
percent catches an initial infection quickly enough to culture
the worm among the honeypots before more than1 percent of
vulnerable machines have been infected. For larger population
sizes – those greater than35000 machines – a sensor density
greater than50 percent yields little return in terms of response
time of the system.30% seems prohibitively large; however,
since sensors can be deployed using one physical router to
monitor large blocks of unused IP addresses, we believe the
cost is acceptable.

Figure 3 confirms our expectation that response time de-
creaseslinearly as the number of sensors increases; this is
expected, as each scan has a constant probability of hittinga
single monitored IP address.



PEER_HP 4
SENSORS 30000
HONEYPOTS 1000

TABLE II

ACCEPTABLEVALUES
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Figure 2 shows the overhead of culturing worms as number
of honeypot participants grows is quite low, even with a small
infection out-degree among participants. Clearly, culturing
leverages the epidemic properties of worms to spread news
of the threat quickly among all participants.

Interestingly, smaller vulnerable populations demand extra
vigilance; a larger number of sensors is required to capture
an initial infection fast enough to beat the epidemic growth
among the vulnerable machines.

From our analysis, we can extrapolate some recommended
values for a concrete deployment of the system. We choose
a honeypot population of 1000, but the simulations show that
we can culture efficiently for larger populations. Our sensor
population is set conservatively at30000; this ensures the
population of infected machines remains small – less than 1
percent in the worst case – while still allowing time for full
culturing among the honeypots.

VII. PROTOTYPEDESIGN AND DEPLOYMENT

We have obtained some preliminary experiences with a
prototype implementation of our system. Our prototype we
developed supports multiple sensors forwarding traffic to a
chain of managers running honeypots. All components can re-
side in different networks, and components communicate using
GRE tunneling. Our honeypots are implemented using virtual
machines under VMWare. Cleaning up after an infection is
easy; we just shut down the virtual machines and they revert to
a clean state. VMWare also supports the suspension of virtual
machines, allowing us to save captured worms and attempt to
reinfect our system after signatures have been deployed. To
support active response we use the tcpflow tool to reassemble
flows, and use Rabin fingerprints to break flows into non-
overlapping blocks, as described in [8]. Once all observed
flows have been decomposed and broken into chunks, we
compute a count of the number of times a block has been seen

among distinct flows, and as described in the paper, choose the
most frequently occuring blocks as likely signatures. Oncewe
have a signature, we use the snort-inline [20] tool to interpose
on all network traffic, and statefully inspect and kill flows if
they contain specified content.

To test our system, we deployed 8 Windows XP honeypots
and deployed 1 sensor on a DSL connection. Our goal was
to immunize our system against a worm taken from the wild.
The local network was very active, and the worms that we
targeted could be caught in under a minute in most cases.

For example, we caught several variants of the Blaster
(2003), a worm which exploits a vulnerability in Microsoft’s
DCOM RPC interface in Windows 2000/XP. We observed the
worm making several types of connections as it spread. Blaster
uses a buffer overflow to execute a small piece of shell code,
which then downloads the rest of the worm code from the
infecting host via TFTP. After observing multiple connections,
our automated signature generator created signatures for the
worm. When used with Snort-inline [20], they proved effective
in preventing uninfected honeypots from being infected, some-
thing we could test immediately using a live copy of the worm.
In comparing our signatures to their published equivalents, we
also noted a significant overlap. These results show our system
is capable of generating effective signatures.
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