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ABSTRACT

A novel data collection approach where a researcher simultaneously recruits

respondents for sampling and collects relational data leveraging proximity

perception is presented. The key idea underlying our approach is that by collecting

social proximity information from respondents without requesting an enumeration

of ego ties, we can achieve the collection of the relational data more efficiently

without raising privacy and anonymity concerns. The main assumption of our

approach is that whenever the geodesic distance between alters within a social

network is not too large, respondents can perceive and report the distance value.

Starting from this assumption, we develop three models, and use simulations

to evaluate their performance. For each of these models, we consider different

sampling methods in particular, random sampling and Respondent Driven Sampling

(RDS). In addition, we develop algorithms to organize the entities within the

sample to efficiently elicit the perceptions of the respondents.

Our results indicate that this new approach is able to generate network

distance estimates that are coherent with the underlying social network topology.

With regards to sampling, we find that the new approaches presented here performs

best when coupled with the RDS method.
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1 Introduction

Wasserman and Faust (1994) define social network analysis as a research

perspective which encompasses models, theories and applications that are expressed

in relations of social actors in a social network. In the field of social network

analysis, studies on hidden populations attract a growing interest because of their

implications for public health and safety.

Hidden networks are communities whose activities are concealed from others

because of social and legal sanctions (Hendricks & Blanken, 1992; Watters &

Biernacki, 1989). Loosely linked cyber networks of hackers, child porn users, exotic

usenet groups, and criminals who use online means are hidden networks which

evolve in cyber space. Understanding the structure of these networks and locating

important actors are vital to explain the relations within these networks or to

conduct efficient investigation of cybercrime. However, classical approaches which

study known social networks are insufficient when analyzing these networks (Lu,

Polgar, Luo, & Cao, 2010; Holt, Strumsky, Smirnova, & Kilger, 2012).

One challenge in studying hidden populations is the unavailability of network

data. Archival data, such as police, judicial and institutional records are difficult to

access (Arsovska, 2012), and they are also prone to bias (Watters & Biernacki,

1989). In addition, traditional data collection methods such as household surveys,

telephone and email surveys are usually inefficient because these hidden

communities form a small fraction of the entire population (Heckathorn, 1997).

Therefore, the researcher needs to access individuals systematically using more

sophisticated sampling techniques (Muhib et al., 2001; Heckathorn, 1997).

Another challenging issue in research on hidden networks is how best to

collect relational information. Because of the stigmatized nature of participation

within these networks, privacy and anonymity are of particular concern, and these

concerns can affect the quality and quantity of the respondents’ reports (Arsovska,
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2012). Researchers who seek to collect a maximum amount of accurate data using

minimal resources should bear in mind these trade-offs, in order to minimize

falsified or biased reports and to maximize participation by the target population

(Spreen, 1992; Heckathorn, 1997; McNeeley, 2012; Dombrowski, 2012).

In this thesis, we develop an interview-based data collection design in which

we sample individuals and collect network data simultaneously. Our method collects

the perceptions of social proximity from studied respondents. Through simulations,

we evaluate the performance of our data collection design, and interpret the results

of these simulation experiments.

We demonstrate that this method is able to collect and synthesize accurate

network data while raising fewer privacy and anonymity concerns. The method also

produces estimates of relative social network distance between pairs of actors.

The document is organized as follows. In Section 2, we introduce the

background on Social Network Analysis (SNA). We start by presenting an overview

of fundamental concepts, then we describe several commonly used sampling

methods, and present techniques for collecting relational network data, and both

their strengths and weaknesses. In Section 3, we introduce the problem statement,

our objectives, the main idea underlying our approach, and assumptions. Section 4

explains our methodology for evaluating the performance of the proposed design.

Section 5 briefly presents our simulation environment. Section 6 presents the

experiments we conducted using three different models. Section 7 discusses the

results of these experiments, comparing the models under consideration. In Section

8, we present the limitations of our study, and describe possible future extensions to

this work.
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2 Background

The field of SNA analyzes social ties and network structures towards

advancing the understanding of human behavior. The main proposition of SNA is

that social actors and their networks are interdependent (McGloin & Kirk, 2010),

and that social networks have implications on individuals actions because they

provide both opportunities and constraints (Wasserman & Faust, 1994b).

SNA is an interdisciplinary field which includes both theoretical concepts

and methodological techniques (Papachristos, 2011). SNA expresses theories,

models and applications concerning patterns and regularities of relations between

actors (Wasserman & Faust, 1994b). Its methodological techniques are drawn from

many fields including graph theory, statistics, algebraic models (McGloin & Kirk,

2010; Papachristos, 2011), simulation and visualization (Marsden, 2005).

2.1 Social Networks

The main components of a social network are actors and links. Actors can be

any social units, such as people, institutions or web sites. Links are the pairwise

social ties or relations channels among pairs actors, e.g. contacts, group

attachments or meetings (Scott, 2000).

Graph theory provides a formal language and a set of techniques to study

social networks. In network terms, a social network is denoted as G = (V,E), where

V is the set of vertices or nodes (actors), and E is the set of edges, ties or links

(relations). The number of elements in V is the size of the network, which usually

denoted as N .
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Figure 1 . A graph with 5 nodes

For example, in Figure 1, there is a five-node graph where

V = {A,B,C,D,E} and E = {(A,D), (B,C), (B,D), (B,E), (C,D)}.

The main objects of study in SNA are actors and their relations, such as

dyads and triads (Wasserman & Faust, 1994b). A Dyad is a subgraph which

consists of a pair of vertices and a tie between them. A triad is formed by three

nodes and the existing ties connecting each other.

According to the types of relations, there are two types of graphs: directed

and undirected (Wasserman & Faust, 1994a). If the relation is oriented from one

actor to another, there is a sender-receiver relationship between actors, and then the

resulting graphs are referred to as directed. In undirected graphs, there is no such

orientation implied.

The geodesic distance is the shortest path distance between a pair of

vertices (Wasserman & Faust, 1994a). In total, N × (N − 1) ordered vertex pairs in

an N-node graph, and there are
(

N
2

)
unordered vertex pairs.

Let u and v be two distinct vertices ∈ V , and d(u, v) be the function that

returns the length of shortest path distance connecting u to v. There can be two

distinct scenarios.

Scenario I: d(u,v) is a a finite number. Note that if d(u,v) = 1 then u and
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v are connected by an edge . If d(u, v) > 1, there is no edge between u and v , but

there is a finite path connecting these vertices.

Scenario II: If d(u,v) is infinite. It implies that one can not reach from u to

v.

Based on geodesics, one may define properties such as centrality and density

(McCormick, 2011; Papachristos, 2011). If there are many pairs with short geodesic

paths connecting them within the social network, this indicates that the network is

"centralized". On the other hand, a non-centralized network has a few long chains

(McCormick, 2011). Furthermore, when the geodesic distance between a large

fraction of pairs of nodes is finite, this indicates strong connectivity within the

network (Wasserman & Faust, 1994a).

The number of geodesic paths which involve an individual actor is the basis

of the actors’ betweenness centrality, and the sum of geodesic distances from

other vertices to an individual node indicates the closeness of that node.

Network density measures the average strength of the connections

(Marsden, 1990). It is taken to be the proportion between actual links in the

network to the theoretical maximum which is
(

N
2

)
.

The number of ties of an individual node is called its degree, and is one of

the most common measurement used to identify important actors in a social

network. From the network perspective, degree distribution of actors is an

important measure.

Having given an overview of SNA, we will now discuss sampling and data

collection techniques. The reader who is interested in further details on SNA is

referred to Wasserman and Faust, (1994), Scott, (2000), and Butts, (2008).
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2.2 Sampling Methods

Broadly speaking, we can categorize sampling methods into two classes:

probabilistic sampling and non-probabilistic sampling (Meyer & Wilson, 2009;

Heckathorn, 1997).

2.2.1 Probabilistic Methods. In probabilistic methods, each actor in

the social network is included in the sample with a non-zero probability (Sudman,

1976). There are several methods for random sampling, namely simple random

sampling, stratified and cluster random sampling. In simple random sampling, every

actor in the population has the same probability of being included in the sample,

whereas in stratified and clustered sampling, different subgroups may be assigned

different probabilities for being selected (Meyer & Wilson, 2009).

The greatest advantage to the probability sampling is that it allows the

researcher to generalize findings from the sample to the entire population. However,

when network being considered is large or the target is comprised of hidden

populations, these techniques may not be viable. In such a circumstance, the

number of subjects is sparse within the population as a whole, and because of this,

the researcher must screen a large segments of the population, which is infeasible

due to the costs involved (Watters & Biernacki, 1989; Stueve, O’Donnell, Duran,

Doval, & Blome, 2001).

2.2.2 Non-Probability Sampling Methods. In non-probability

sampling techniques, the probability of a subject being included in the sample is not

known. Thus, in these techniques the sample may exclude certain some

sub-populations or be otherwise biased.

In these techniques, the researcher specifies the aims and the purpose of the

research, and characterizes the network of interest. Then the researcher designs a

sampling method in a convenient and efficient way, with the purpose of locating

subjects (Hendricks & Blanken, 1992). Researchers also refer this sort of sampling
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techniques as convenience sampling (Meyer & Wilson, 2009).

Below we will explain some widely used non-probability methods:

community venues, time-space sampling, snowball sampling, and finally,

respondent-driven sampling.

2.2.2.1 Community Venues Technique. In this method, the

researcher samples people from locations where the community of interest is

expected to be present. Potential venues may include medical institutions,

counseling centers, shelters, local bars etc (Miller, Wilder, Stillman, & Becker, 1997;

Meyer & Wilson, 2009).

2.2.2.2 Time-Space Sampling. Time-space sampling is a three step

process. First, a sample of venues is selected from the universe of venues, and

attendance statistics are screened according to time intervals. Second, weights are

assigned for specific time-space venues to select subjects. Finally, venues are visited

at the specific times selected, and attendees are recruited to participate in the

survey (Stueve et al., 2001; Muhib et al., 2001).

2.2.2.3 Snowball Sampling. Snowball sampling is a method which

relies on social networks to locate subjects. After finding the initial participants

with previously mentioned techniques, the researcher asks each of the initial

respondents to report other people in the subject pool of interest. In this way, the

researcher uses previous participants to discover additional participants in the study

(Biernacki & Waldorf, 1981; Hendricks & Blanken, 1992; Wasserman & Faust,

1994a; Petersen, 2005).

2.2.2.4 Respondent Driven Sampling (RDS). RDS is a

dual-incentive chain-referral sampling method which relies on social networks to find

recruits (Heckathorn, 1997). This method assumes that members of a hidden

population are better able to contact their peers for recruitment into the study than

the researchers themselves.
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The RDS method begins with recruitment of a number of respondents, which

are referred to as "seeds". The primary incentives are given to the seeds when they

participate in being interviewed. When a seed completes his/her interterview, a

fixed number of "RDS coupons" are given to them, and the interviewee is offered a

secondary incentive for each new subject who participates in the survey process by

presenting a coupon. The dual-incentive process is applied recursively to new

participants in the same manner as for the original seeds (Heckathorn, 1997, 2002;

Salganik & Heckathorn, 2004; Ramirez-Valles, Heckathorn, Vazquez, Diaz, &

Campbell, 2005).

Prior work indicates the RDS method can yield large sample sizes and

provides a good fit to archival records of hidden communities (Salganik &

Heckathorn, 2004; Dombrowski, Khan, Moses, Channell, & Dombrowski, 2012).

RDS is different from the snowball sampling, for the participants do not

disclose their peers to the researcher directly. Instead new participants are recruited

by previous participants, and participate in the survey willingly. In this manner,

RDS raises fewer privacy and anonymity concerns. Moreover, research shows that

respondents are more likely to participate in the study when they are recruited by

previous participants with whom they have close ties (Wejnert, 2009).

2.3 Techniques to Collect Relational Data

In this part, we will introduce techniques used in surveys and interviews to

collect relational data.

2.3.1 Whole Network Studies. In whole network surveys, the roster is

the most commonly used. (Butts, 2008; Marsden, 2005). In this method all

members in the sample are enumerated in a roster, and then respondents are asked

to report their ties to other members. This is a convenient method for respondents

because they do not need to remember or enumerate the members in their social
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Figure 2 . Recruitment network of Respondent Driven Sampling from Heckathorn, (1997).

network. However, this method requires complete knowledge of the members

beforehand, and may also be impractical when the network of interest is too large

and/or represents a hidden population. It also requires a follow-up contact with the

respondent after the roster is set. (Butts, 2008; Heckathorn, 1997).

2.3.2 Ego-Network Studies. In ego-network studies (Jones & Volpe,

2011), the network data is collected with respect to an individual subject. The "ego"

refers to that studied subject to whom the researchers ask to enumerate the alters

(other subjects within the social network) that they recall and report their relations

with these alters. In these studies, respondents may also be asked to report ties

among these alters. This method is mostly employed when the network is assumed

to be large, and its members are not known prior to the study. Respondents are

asked
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2.3.3 Cognitive Social Slices. Cognitive Social Slices (CSS) is a

technique intended to predict the distortion that occurs due to informant

inaccuracy. In what follows, we summarize Krackhardt’s explanation of CSS

(Krackhardt, 1987).

In the CSS survey, respondents are asked about their relations between

others and also their perception of ties between alters. Their responses are stored in

a N ×N ×N network matrix. In this matrix each cell is denoted as Ri,j,k where i is

the sender of the relation, j is the receiver, and k is the perceiver of the relation

(Krackhardt, 1987).

After the data is collected from respondents, all reports are aggregated and

two different data slices are generated, namely the Locally Aggregated Slice (LAS)

and the Consensus Structure Slice (CSS). In LAS, responses are aggregated

according to the intersection rule or the union rule. In the union rule, if at least one

of the endpoints of an edge reports a tie, the tie is included in the LAS. In the

intersection rule, both endpoints’ must report the existence of a tie in order to

ensure its inclusion. When we construct the CSS, a threshold value is used, and a

link is included in the CSS structure if and only if the number of reports which

perceive the existence of the tie is equal to or greater than this threshold value.

2.3.4 Response Format. After discussing the survey and interview

methods, we will briefly describe the response format that is used to encode

relational network data. When collecting relational data, respondents may be asked

to report their judgments and perceptions in a binary form, ordinal form or as a

ranking (Marsden, 2005; Wasserman & Faust, 1994a).

Binary encoding is the simplest method for respondents. In this approach,

respondents simply indicate whether there is a tie or not (Marsden, 2005). For

example, respondents may be given an enumerated list or roster and asked to check

each of the ties they perceive, or respondents may be asked to generate a list of the
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names of people with whom they believe they have ties (Coleman, Katz, & Menzel,

1957; Parker & Asher, 1993; Marsden, 1990).

In comparison, the ordinal rating or ranking formats require that

respondents evaluate their relationship strength, weight, frequency. In ordinal

rating, In ordinal rating, respondents are asked to rate all the other actors for a

particular measure. In ranking format respondents rank their ties to all other actors

within the social network. (Bernard, Killworth, & Sailer, 1979; Wasserman & Faust,

1994a; Jones & Volpe, 2011).

2.3.5 Potential Shortcomings. Because we will be designing and

presenting a new technique to collect relational data, it will be useful to evaluate

the shortcomings of the existing schemes described above.

Whole Network/Roster Method, Cognitive Slices The researcher

provides a list of all pairs of subjects in the sample, and asks respondents to report

the ties between them. Unfortunately, if the number of people in the sample is very

large, listing all members in the roster becomes impractical, so the researcher must

select a subset from the sample and asks the respondent to report ties within this

subset.

Ego Network/ Free Recall Method Respondents enumerate individuals

in their ego-network and report their perceptions of existing ties.

Unfortunately, these schemes suffer from several shortcomings: inefficiency,

distortion and concerns of privacy and anonymity. We will elucidate the nature of

these concerns by way of a small example.

Example: Suppose that we are studying a very small network illustrated in

Figure 3 where the adjacency matrix is given in Table 1.

There are eight actors in the network. Suppose that six of the actors are in

the sample whereas actor C and G are not included in the sample. Then,

respondents are provided a roster or a list in which these six actors are enumerated.
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If we assume all ties are disclosed by respondents accurately,(which is the most

optimistic situation) methods such as roster or cognitive slices inevitably lead to

inefficiency and distortion in the collected network data.

Figure 3 . A graph with 8 nodes, where 6 nodes are included in the sample.

A B C D E F G H
A 0 1 1 1 0 0 0 0
B 1 0 1 0 1 0 1 0
C 1 1 0 1 0 1 1 1
D 1 0 1 0 0 0 0 0
E 0 1 0 0 0 0 1 0
F 0 0 1 0 1 0 1 0
G 0 1 1 0 0 1 0 1
H 0 0 1 0 0 0 1 0

Table 1
Adjecancy matrix

a. Inefficiency: This method is unable to retrieve all available information.

Suppose that respondents know members C, D and H where C, D, H forms a

geodesic between D and H. If C is not included in the roster (sample), respondents

can not report the ties between D and C , and C and H. Therefore, the shortest

distance between D and H is not revealed, even though respondents know this

information.
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Another inefficiency may occur if the network is sparse. Suppose we have a

large community where members have very few links between them. In such a

circumstance, asking subjects to identify ties between a subset of samples may

reveal very few ties, which results in inefficient use of interviewing resources.

b. Distortion in distances: Geodesics that are produced from this

method will suffer from distortions because shorter paths may exist which are not

discovered from the sample data. For example, in estimating the geodesic distance

between actors D and F, a longer path, (D,A,B,E,F) may be discovered by chance

because of the non-discovery of an intermediary node, for example C.

Also note that actor H appears as an isolated node because actors C and G

failed to be subjects in the study. Thus, there can be the distortions in all pairs of

geodesic distances between the original graph and estimated graph since the

estimated graph only includes links among actors in the sample.

A B C D E F G H
A 0 1 1 1 2 2 2 2
B 1 0 1 2 1 2 1 2
C 1 1 0 1 1 1 2 1
D 1 2 1 0 2 2 3 2
E 2 1 1 2 0 1 2 1
F 2 2 1 2 1 0 3 2
G 2 1 2 3 2 3 0 1
H 2 2 1 2 1 2 1 0

(a) Original graph

A B D E F H
A 0 1 1 2 3 ∞
B 1 0 2 1 2 ∞
D 1 2 0 3 4 ∞
E 2 1 3 0 1 ∞
F 3 2 4 1 0 ∞
H ∞ ∞ ∞ ∞ ∞ 0

(b) Predicted graph

Figure 4 . Geodesic distances between all pairs in a graph of 8 nodes

If we now turn to ego-network methods, these methods suffer from privacy

and anonymity concerns.

c. Privacy: Respondents may be very sensitive about their privacy because

of criminal or stigmatized characteristics of the social network. Therefore, when

they are asked about their connections with others, they may feel their privacy is

violated, and as a result, may produce false or biased reports (Dombrowski, 2012).
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Suppose that B is the respondent, then if B denies its ties with A and E , the true

distance between A and E may not be discovered. As explained above, this will

cause a data loss and associated distortion.

d. Anonymity: In the free-recall method, respondents may not want to

cooperate with the researcher in listing their alters because they assume it will

jeopardize their anonymity. Respondents may not wish to disclose such a list

because of an implict social norm against "snitching" (Heckathorn, 1997). If we turn

to our example, they may not want to report links where actors C and G are

involved, because this requires nominating people who are not in the sample.

These problems above a thorough d can not be overcome by increasing the

sample size, because researchers have limited resources (e.g. incentive money and

interviewing time) (Arsovska, 2012).

3 Problem Statement, Objectives and Assumptions

Problem Statement: Is it possible to estimate topological features of a

social network by asking a sample of individuals about the perceived proximity of

other pairs of individuals? If so, what are the factors that influence the performance

of such a scheme?

This scheme must address the following important objectives:

• Efficiency: The scheme should handle sampling and data collection in such a

way that the network topology will be revealed with a minimal amount of

resources (e.g. time and incentive money).

• Accuracy: The estimate of topological features produced from the collected

data should indicate closely resemble the feature of the the actual network.

• Anonymity: The data collection mechanism should allow the respondents to

preserve their anonymity, and safeguard against reported relations being trace
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backed to the studied subject.

• Privacy: Because informants are reluctant to disclose their own ties, the

scheme should favor asking them about the proximity between other pairs of

individuals.

Approach: The core idea of this research is a new model for interview

design which asks the respondents to report their perception of proximity between

other pairs of individuals in their social networks.

We have two assumptions in this approach:

Assumption 1: The main assumption of our study is that people’s

perceptions of social proximity between recognized alters is coherent with the

geodesic distance between those alters.In other words, respondents are expected to

have significantly different perceptions of proximity for pairs of individuals that are

at different geodesic distances from each other. For example, a respondent reports

about three different pairs, who are at geodesic distance one, two and three. We

assume that the respondent will perceive and report smallest distance for the first

pair and the greatest distance for the last pair.

Assumption 2: When the geodesic between a pair is very large,

respondents can not make an assessment about the social proximity between this

pair. We use "perceivable proximity threshold" to refer the range of distance where

respondents can distinguish distances among members in a pair.

4 Approach

In this section, we will first introduce a new interview design method that

may be used to collect information about large social networks and hidden

populations. Then we will describe our simulation environment with which the

interview design was evaluated and optimized.
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4.1 A New Data Collection Method

We designed a new data collection method for social networks, that may be

used when:

a. No network information is available beforehand.

b. Respondents are sensitive about their privacy and anonymity. In

particular, respondents do not want to enumerate the alters, or to disclose their own

ties.

Assuming these characteristics hold in the network of interest, the researcher

samples individuals, and conducts interviews with them. After completing each

interview, the researcher records the subject’s photograph. The ongoing process

yields a set of pictures of subjects which grows by one upon the completion of each

interview.

The interview consists of two phases.

In the marking phase, respondents are shown the icons, figures or names

(any symbols which the actors are well-known with and helps the respondents to

recall associated subject) from the sample, and they are asked to mark those

subjects that they recognize, and separate from them the ones that are unfamiliar

to them. In this phase, respondents may also be asked to report the social proximity

between them and the recognized subjects in the list.

In the prediction phase, respondents are shown pairs of recognized

subjects and asked to report on the perceived proximity (1,2 or 3) between each

pair. We assume that the perceived proximity that is reported is proportional to the

geodesic distance between the pair within the social network. For example, if a

respondent perceives that a pair of individuals reciprocally know each other, the

respondent will report 1 as the perceived pairwise distance. On the other hand, if

the respondent believes that the two subjects have a mutual friend, but do not know

each other directly, the respondent will report 2. Finally, if the respondent believes
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that one member of the pair has a peer who is acquainted with a peer of the other

member of the pair, the respondent will report 3.

Figure 5 . SNAPT system overview

4.2 Overview of Simulation Environment

In order to test the performance of our data collection method, we developed

a simulation environment which enables us to conduct experiments with different

sampling methods.

Figure 5 shows the core model for a SNAPT simulation environment. The

simulation, in brief, follows these steps:

Step 1: We generate a reference graph which plays the role of the true social

network, with all of its attributes: members (vertices), social ties (edges), and social

proximity (shortest path distance).

Step 2: We simulate the respondent recruitment by selecting a vertex from

the reference graph according to two sampling methods: random sampling and

respondent-driven sampling.

Step 3: After a respondent has been chosen, an object selection process

takes place. In object selection, the goal is to select a subset of the sample, for

which respondents could efficiently estimate social distances. To achieve this goal,

we develop three different selection algorithms: random sampling, sampling from

recognized objects, and sampling first from perceivable proximity.
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Subject Vertex Vertex Proximity
1 2 3 2
4 2 3 2
3 1 4 3

Table 2
Pairwise distance in response data

Step 4: After selecting the object set, we simulate respondents’ estimates of

social proximity between object pairs.

Step 5: According to the proximity prediction scheme, we select the

proximity values which are within the assumed perceivable proximity threshold,

denoted as pm. The proximity reports are denoted as Ri:j,k where i is the

respondent, j and k are the objects whose pairwise distance is being reported, is

included into response data according to the formula below:

Ri;j,k =


Ri;j,k, if Ri;j,k ≤ pm

∅, otherwise

These reports are then stored in a data structure which is shown in Table 2.

We repeat Step 1 through 5 until a pre-determined number of interviews

have been completed.

When the number of completed interviews reaches the pre-determined

number, we evaluate the model’s performance by aggregating the data collected up

to that time. To accomplish this, we followed steps 6 through 8.

Step 6: We aggregate the information in the response data in two steps:

First, for each distinct pair, the average value for all respondent reports is

calculated; we refer to these as "Type-I Proxy" distances. Second, pairwise distances

that are not reported directly are inferred using the reported distances. For example

Let dj,k be the distance between two vertices j and k. If dA,B and dA,C are reported

by some subject, we are able to predict the distance dB,C even if it has not been
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reported by any subject by traversing the path dB,A and dA,C . In this way, we can

derive estimates of pairwise distances even if no respondents have reported the

distance for that pair.

Step 7: After aggregation, we generate an estimated network based on the

aggregated distance information.

Step 8: To evaluate the accuracy of the estimated network, the reference

network and the estimated network are compared using a variety of algorithms we

developed: all pairs correlation, routed correlation, node discovery rate. Finally,

results were reported in proper graph formats.

We repeat steps 1 through Step 8 until the desired number of interviews has

been completed.

Step 9: When the simulation has completed the required number of

interviews performance reports are generated in different formats.

A single run of the simulation is illustrated in Figure 6
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Start t=0,i=0

Generate
Reference Graph

Select
Subject/Objects

Proximity
Prediction-Validation/

Store Distance

t mod freq=0?

Aggregate

Generate
Estimated Network

Evaluate

t=number of
total interview?

Report

Stop

yes

no

no

Figure 6 . Flowchart for simulation (single run)
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In the following part of this section we will present each steps in detail.

4.3 Generating True/Reference Graph

The characteristics of the reference graph are described below:

The reference graph, denoted as Gr(V,E), is generated as an undirected

graph with vertices, V, and edges, E.

Vertex and Edges:

Each vertex ∈ V , has an ID number and owner network attributes. The ID

attribute is a unique number which identifies the vertex in the graph, and the

network ID is an attribute used for identifying the network to which the vertex

belongs.

An edge is denoted as e(u, v, w) ∈ E where u , v ∈ V are the endpoints of the

edge, and w is the weight of the edge. In our experiments, the reference graph is

generated as an unweighted graph, and for this reason w was always taken equal to

1.

We represent these attributes in the adjacency matrix A = (ai,j) for

i = 1, ..., N and j = 1, ..., N .

ai,j =


1, e(i, j) ∈ E

0, otherwise

Given these representation of a graph, we now present how we generate the

graph.

Method for Generating Reference Graph

In order to generate the reference graph, we implement a Barabasi-Albert

model, which is a probabilistic scheme to control the growth and link attachment

process for scale-free networks (Barabasi & Albert, 1999). We select the

Barabasi-Albert model, because it is simple to implement, and it is a realistic model
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that has been validated by numerous researchers, and shown to reflect the topology

and degree distribution of the actual social networks (Schneeberger et al., 2004;

Dombrowski, Curtis, Friedman, & Khan, 2013).

In the Barabasi-Albert model,at each step, one vertex is added to the graph,

and this vertex is attached to a number of existing vertices according to the

"preferential attachment probability" (Barabasi & Albert, 1999).

In order to generate a Barabasi-Albert graph, the following parameters must

be specified:

• Number of Nodes, N : The number of vertices in the graph, which represents

the number of members in the SN.

• Number of Initial Nodes, m0.

• Number of edges to attach, m: This parameter determines the number of

vertices to which each new vertex attaches when it joins to a network. Note

that m must be less than equal to m0. This parameter determines the growth

in the number of edges in the Barabasi-Albert model.

Given these parameters, the preferential attachment probability for a vertex

u, is calculated with using the equation below:

ρ(u) = ku∑
v

kv
where u 6= v.

Here, the enumerator is the degree of vertex u and the denominator is the

sum of degrees of all vertices. In this model, vertices that have higher degrees are

more likely to be assigned edges to newly created vertices.

Implementation

At the beginning the graph generations, a new graph is created with m0

isolated vertices. The vertices are assigned sequential ID numbers.

After the initial nodes are added in the graph, new nodes are added one at a

time with sequential IDs until the size of the network reaches N. Whenever a new
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vertex is added in the graph, m vertices are selected, and edges are added between

the new vertex and these m vertices. The m are selected according to the

preferential attachment function given below.

ρ(u) = ku + 1
|E|+ |V | − 1

At the implementation layer, this is achieved using a random number

generator, which produces a real number between 0 to 1. A vertex is selected

randomly from the previously vertices. Then preferential attachment probability is

calculated for this vertex. If the preferential attachment probability is equal or

greater than the random number, an edge is established between the new vertex and

the selected vertex. Otherwise, another vertex is selected randomly, and these steps

are repeated until the preferential attachment value of the selected vertex is greater

than the random number.

The pseudocode for generating the reference graph is presented below.

Algorithm 1 Pseudocode for generating Barabasi-Albert graph
Initialize Graph (m0)
for i = m0 → N do
Create a new Node, u
for j = 0→ m do
Select a Random vertex, v, from the graph
Calculate preferential probability to attach for vertex, v,
Generate a Random Number between 0 and 1, p, for this vertex
if preferential probability ≥ p then
Create Edge, e(u, v)

end if
end for

end for

Custom Java classes that we develop are presented in Appendix A

Figure 7 shows a reference graph of 500 nodes.
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Figure 7 . The graph visualizes a 500-nodes graph which is generated implementing the Barabasi-Albert model. The circles are the
vertices, and the numbers are unique ID numbers corresponding to these vertices. The sizes of vertices are adjusted in proportion to the
node degree.
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4.4 Subject Sampling

We use the word "subject" to refer to the respondents who participate our

study and report their perception about alters’ social distance. In this research, we

test two subject selection algorithms: random sampling and the respondent-driven

sampling. In each method, the system selects one vertex at a time from the

reference graph, and simulates the process of recruitment.

4.4.1 Random Sampling. Random sampling is a probabilistic method

in which each subject is assigned an equal probability of being selected for the study

period. We implement two types of random sampling methods: sampling with

replacement and sampling without replacement.

• Random Sampling with Replacement: In this selection method, we allow a

subject to participate in the survey more than once. Thus, for each subject

selection, the probability for an individual v to be chosen is taken to be

ρ(v) = 1
N

and the probability for a vertex to be selected at least once by time t is

therefore

ρ(v >= 1) = 1− (1− 1
N

)t

Note that one subject is selected at a time, and the probability changes

according to t and N . Here t refers to the total number of interviews that

have been conducted so far. The formula implies that the greater the N the

smaller the probability of selection.

• Random Sampling without Replacement: This method does not allow a

subject to participate in the study more than once. The probability for a
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subject to be selected for participation in the study at time t is

P (v) = 1
N − t

. The probability for an individual to be selected at least one time at time t is

ρ(v >= 1) = t

N

.

Whenever we do not have prior knowledge about the research population,

sampling without replacement yields a higher number of unique subjects compared

to sampling with replacement.

4.4.2 Respondent Driven Subject Sampling. We simulate the RDS

recruitment process as follows. First, an arbitrary number of vertices are selected

randomly from the reference graph. These subjects stand for the seeds, and receive

the first set of the RDS coupons. We use the phrase "coupon source" to refer to the

subjects have been given RDS coupons.

New subjects are selected randomly from the peers of previous respondents

(Salganik & Heckathorn, 2004). In other words, recruits are chosen from the

vertices who are at distance one from the coupon source which still have residual

credits. Whenever a coupon is transferred, the number of coupons associated with

the respondent is decreased by one, and the new subject is given three coupons.

Let S be the subjects who participate in the research, we select new subjects

and track the RDS coupons with the below algorithm:
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Algorithm 2 RDS subject sampling and coupon tracking
Step 1. Filter the subjects in S who have remaining coupons and have any neighbor
(distance=1) that has not participated in the interview.
Step 2. Put the filtered subjects into a list.If the list is empty we are at the
maximum number of subjects that can be reached by RDS, so then we exit.
Step 3. Select a random subject ,coupon source, from this list.
Step 4. Visit all neighbors of the new coupon source who have not already
participated in the interview, and store these neighbors in a candidate list. If
there is no such neighbor (i.e. the candidate list is empty), go back to step 3.
Step 5. Select a new respondent from the candidate list.
Step 6. Give the new respondent three coupons and add it to S. Return to Step
1.

4.5 Object Selection

We use the term "object selection" to refer to the process of efficiently

choosing a set of previous subjects to show the current respondent, and ask them

about perceived pairwise social distances.

Here we will present different object selection methods for choosing objects

from the set of studied subjects so far. Initially, the set of studied subject is empty.

After each interview, the set of studied subjects expands by one.

Henceforth we refer to the subject database as S.

Select Subject,
v from S

Select Object Set

Proximity
Prediction-Validation/

Store Distance

Add v into S

Figure 8 . Flowchart for the subject and object selection

General Characteristics of Sampling From a Live Data Set:
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1 2 3 i j

t(time)
Figure 9 . Snapshot of S when t=j

a. S grows one subject at a time, the addition of a new subject into set S

results in t− 1 new pairwise distances which may be perceived by future subjects.

b. Let t be the current time of an interview, there are
(

t
2

)
pair of subjects for

which distance may be perceived.

c. Let k be the number of objects selected to be shown to the subject in the

tth interview. At time t, the ratio of pairs that have already been shown to the total

number pairs that are available is approximately equal to t×(k
2)

(t
2)

.

d. The new subject is added to the set S, and becomes a candidate to be

selected as an object that will be shown to the future subjects.

This object selection process was varied by considering different selection

algorithms: sampling with replacement, sampling from recognized objects and

sampling within ego network first. In the next section, these algorithms are

discussed in detail.

4.5.1 Random Sampling with Replacement. In this method, for

each interviewed subject, k vertices are selected randomly with replacement from S.

The probability for an individual v to be selected as an object is uniformly given by

ρ(v) = k

|S|

.

This method suffers from a bias. The reason for this is that all elements in S

have the same probability of being selected, so the expected number of times that

an element of S is chosen to be an object is greater for older members of S. In
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particular, if a subject v is interviewed at time t = j, the probability of being

selected is for vertex v:

p(v) = 1− (1− 1
n

)k

It follows that the expected number of times that subject v will be shown as

an object is

Expected(v) =
n=t∑
n=j

1− (1− 1
n

)k

.

4.5.2 Sampling within Recognized Subjects. In this method, we

assume that a subject is able to recall only a subset of the larger community. We

use a parameter which we can the "recognition number" to specify the number of

people a subject is able to recall.

The recognition number will be denoted as rn. Let N be our estimate of the

total population size, and let fixed rn be the recognition number. Using N and rn,

we can calculate the recognition ratio,which is denoted as r, which determines how

likely a subject is to recall a randomly chosen individual from the social network:

r = rn
N

For a set of subjects, S, that is growing by one with each consecutive

interview, the number of people that the subject who is interviewed at time t will

recall is

K = r × (t− 1)

For example, if the 51st subject who participates in the interview knows 100
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people in the social network, and this social network consists of 1000 people, then

our estimate for K is 50× 100
1000 = 5. This means that at the time we interview the

51st of 1000 subjects we expect this subject to be able to recognize 5 of the 50

subjects we have interviewed previously.

In our implementation, each time we attempt to select K objects to show the

current interviewee, we must calculate K and determine the number of objects that

are to be selected. Note that the system can not select any objects until the

estimate of K is greater than or equal to 1, and K increases linearly in proportion

to the number of subjects interviewed until it reaches its maximal value which we

take to be the recognition number(rn).

0 ≤ K ≤ recognition number

There are three parameters of these methods:

• rn: Recognition Number. This is the maximum number of individuals that a

subject is expected to be able to recognize.

• S: An ordered list of distinct subjects who have participated in this survey so

far.

• N : An integer value which is an estimate of the size of the total population

Given the above parameters, the pseudocode of the method is presented

below.

Algorithm 3 Pseudocode for selector
K = b( |S|×rn

N
)

if K ≥ 1 and K ≤ rn then
Select K objects randomly from S

end if
Add new subject to S
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4.5.3 Sample Within Ego Network First (ENF). In this selection

method, we assume that there is a perceivable proximity threshold,denoted as pm,

and respondents can estimate the distance between themselves and other subjects or

between pairs of subjects in the community as long as the distances are less than or

equal to the perceivable proximity threshold.

Within each interview a respondent is asked to separate the known subjects

that have been seen so far into two categories: those that they recognize and those

they do not recognize. Then the subject is asked to estimate the distance between

them and the subjects they have recognized. We choose pairs of objects that are

within the perceivable proximity threshold distance from the interviewee.

A Class diagram where the custom classes used to implements can be seen in

Appendix A.
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4.6 Distance Calculation/Proximity Prediction

After object selection, all pairs of the shortest path distances among object

set, denoted O, are calculated using Dijkstra algorithm. Thus, the number of

pairwise distances computed is
(

K
2

)
.

The Dijkstra algorithm is an algorithm to compute the shortest path

between a given source node and destination vertex.

4.6.1 Infinite Perception. In this model, we assume that subjects can

produce perfect estimates about the proximity of pairs of subjects in the studied

network. In other words, a subject when queried about the distance between any

two previously known subjects will be able to provide an accurate estimate no

matter what the separation between these two vertices is.

4.6.2 Validation Perceivable Proximity. In this model, we assume

that;

1. A subject can estimate the distance between a pair of vertices, if and only

if the true distance between these pair of vertices is less than a certain perceivable

perception threshold.

2. The respondent perception reports which are greater than the perceivable

proximity threshold is inaccurate, so they need to be omitted.

We illustrate how the perceivable proximity threshold operates by way of an

example.

A

B C

(a) Scenario 1

A

B C

D

(b) Scenario 2

A

B C

D E

(c) Scenario 3
Figure 10 . In this figure three scenarios for the distance between B and C are illustrated.
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Suppose that pm = 2, and A, B, C, D and E are people in the social

network, and their positions are illustrated as shown in Figure 10.

This model assumes that A may reliably report an estimate of social

proximity between B and C, only if B and C knows each other, or they have a

mutual friend, and do not know each other. Thus, A can report the proximity

between B and C in Scenario 1 and 2. However, in Scenario 3, A’s perception will

be inaccurate because the proximity between B and C is 3 which is greater than pm.

In the implementation, we calculate the distance between object pairs, and

store the distances which are less than or equal to the perceivable proximity. We

omit the distances which are greater than the perceivable proximity.

4.7 Aggregation

In our simulation for a distinct vertex pair, several reports may be given by

different subjects. We merge all these reports into a single record by calculating

average values. We called these distances Type-I proxies. In other words, for any

reports which involve the same vertex pair, we calculate the mean value of all the

reported distances for that pair, and use this mean value as our aggregated estimate.

In addition, for all pairs whose distance has not been reported directly by

some subjects, we determine whether there is a path between the endpoints of the

pair. If such a path exists, connecting the pair we use the length of shortest such

path as an estimate of the distance. If no such path exists, we record the length for

this pair as infinity.

We illustrate this aggregation process by way of an example using a five node

graph shown in Figure 11. Suppose that the response data before aggregation is

illustrated in Table 3.
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Figure 11 . An example graph of 5 nodes

Subject Vertex Vertex Proximity
D A B 1
C A B 1
B A D 2

Table 3
Response data(Before aggregation)

First, the responses for pair (A, B) are merged. Since both C and D report

the distance between A and B as 1, the average taken to be the canonical estimated

distance which is 1. The distance between B and D is not reported directly,

however, the path which involves links (B,A) and (A, D) can be found. Because no

other path can be distance. The aggregated data is illustrated in Table 4.

Vertex Vertex Proximity
A B 1
A D 2
B D 3

Table 4
Aggregated data

4.8 Estimated Graph

The estimated graph is generated as a cumulative representation of the

responses using the results from the aggregation process decribed in the previous

section.

The estimated graph is generated as a weighted graph, denoted as GEstV,E
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where the vertices in the aggregated data are added as nodes, and both Type-I and

Type-II proxies are added as edges.

The custom classes used in this method of generating an estimated graph is

presented in Appendix A.

4.9 Evaluation

After generating the estimated network, we compare it to the reference graph

and measure the divergence between them.

In the estimated graph, the distance between two vertices u and v can be;

a. finite, implying that there is a path connecting u and v.

b. undefined, meaning that at least one of the vertices are not included in

the estimated network,

c. is infinite because there is no path between u and v.

Pairs of vertices which fall into the first of these categories, provide numbers

which can be correlated with the ground truth as measured using the reference

network. In other words, we can correlate pairwise distance values in the estimated

network against corresponding distance values in the reference network. The pairs

which lie in the second group are used to give rise to the notion of node discovery.

The pairs of vertices which fall in to the third group are not included in correlation

computation because these values are infinite.

The performance metrics we use include: vertex discovery rate, adjusted

vertex discovery rate, all pairs distance correlation and routed correlation.

4.9.1 Vertex Discovery Rate. Vertex discovery rate shows the ratio

between the number of vertices in the estimated network and the total number of

subjects in the set S.

4.9.2 All Pairs Distance Correlation. In all pairs correlation, we

calculate all pairs distance in the estimated network and all pairs distance in the
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reference network. Then, for pairs (u,v) of vertices of which these two distances are

finite, we calculate Pearson Correlation as follows.

ρ(X, Y ) = Cov(X, Y )√
Var(X)Var(Y )

.

where X is the set of all finite pairwise distances in the estimated graph, and Y is all

corresponding distances in the reference graph.

4.9.3 Routed Correlation. In routed correlation, we implement a

vertex-centric correlation measure to evaluate accuracy of the estimated network.

Let VEst be the set of vertices in the estimated graph. For any vertex v ∈ V ,

we calculate the distance to all other vertices. This results in N − 1 pairwise

distance from v to the other nodes in an N-node network. Next, we correlate these

numbers with their corresponding distance values in the reference graph.

After calculating vertex-centric correlation coefficients for each vertex v ∈ V

, we obtain a set of N correlation values. In order to predict overall performance, we

calculate the mean of all vertex-centric correlation values.

The pseudocode for Routed Correlation is presented below:

Algorithm 4 Routed correlation coefficient
for i = 1→ N do
src = vi

for j = 1→ N do
if estD(src, vj) 6= ∞ then
Px[j] = de(src, vj)
Py[j] = dt(src, vj)

end if
end for
Ri = ρ(Px, Py)

end for
RoutedR = mean(R)

4.9.4 Adjusted Discovered Nodes. In this method, we address some

of the shortcomings of our correlation coefficient calculations. Our correlation
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coefficient calculation methods may report an inappropriately high correlation

coefficient when there are relatively few number pairs of distances of finite-distance

pairs and many pairs of vertices at infinite-distance pairs.

In the adjusted discovered nodes method, the fraction of pairs which are

finite distance is used to correct this type of error. Let D be the number of nodes in

the estimated network. We can calculate the adjusted discovered node with below

formula:

Adjusted Discovered Nodes = D × Number of finite pairs(
D
2

)
The custom classes used for evaluation are presented in Appendix A

4.10 Reporting

In this part, we present the structure of report files which are produced in

the course of simulation.

4.10.1 Text File Format. For each run of the simulation, a report file is

produced by the system. The format of the text file is presented in table below.

Interview
Number

Number of Nodes
Discovered

Number of Pairs
Compared

Correlation
Coefficient

Table 5
Text file format reporting a single experiment

After the simulation completes all runs, the system produces as many reports

as experimental trials in text file format. Then using a code script, corresponding

values of these text files are read, and the mean and standard deviation information

are calculated and reported in a text file. The format of this file is presented in

table below.
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Interview
Number

Mean of
Correlation

Std. Deviation
of Correlation

Mean of Vertex
Discovery

Std. Deviation of
Vertex Discovery

Table 6
Text file format reporting compiled results

4.10.2 Dot File Format. In order to visualize the reference and the

estimated networks, the social network data is written to a graphics (.dot) file

(Gansner, Koutsofios, & S., 2006).
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5 System Development

For this study, we developed a custom simulation environment using

Netbeans IDE with Java 1.7.0.4 for Window 64 bit (Oracle, 2014).

In our software, in addition to standard Java packages we also used Apache’s

open source mathematical library, Apache Commons Math (Apache Comman Math

Library, 2009).

The source code of the simulation environment can be found at the git

repository located at http : //git.code.sf.net/p/snapt/code

With regards to software design, we aim to develop the software in a

modular way where main interfaces are created for each component such as network,

selector, divergence calculator etc. Thus, the program can use classes which

implement base interfaces without requiring significant changes to the source code.

It also enables the addition of new implementation classes to the the system.

In input for our software is a text file where the following parameters are

defined:

• the seed of the random number generator,

• parameters of the reference graph: network size, number of initial,nodes and

number of edges to attach at each state of Barabasi-Albert network generation,

• Selector Type: Random, RDS, RDS-Ego,

• Evaluation Metric: All Pairs Correlation, Routed Correlation,

• Recognition Number,

• Perceivable Proximity Threshold,

• Number of subject interviews (simulation termination criteria)

• Frequency to get evaluation results
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When the simulation is run, the above input file is parsed, and the system

initializes classes and parameters using the fields specified in the input file.

After this initialization, the simulation runs as shown in the Figure 12.
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Start t=0,i=0

Intialize Components

Set Random Number
Generator(seed + i)

Generate
Reference Graph

Select
Subject/Objects

Proximity
Prediction-Validation/

Store Distance

t mod freq=0?

Aggregate

Generate
Estimated Network

Evaluate

t=number of
total interview?

i++

Report

trial = required trial?

Stop

yes

no

no

no

yes

Figure 12 . Flowchart for SNAPT simulation
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Model-1 Model-2 Model-3
Subject
Selection

Random Sampling
without Replacement
(pg.29)

Respondent Driven
Sampling (pg.26)

Respondent Driven
Sampling

Object
Selection

Random Sampling
from Recognized
Subjects

Random Sampling
from Recognized
Subjects

Sample First From
Ego Network
(pg.31)

Table 7
The subject and object selection methods implemented in models

The class diagrams for the system can be seen in Appendix A.

6 Experiments

In this section, we will first present three models that we have developed

using different combinations of subject selection and object selections. Then, we will

present test results which compare the performance of these three models.

Table 7 lists the three models and the subject/object selection techniques

that are used in each of them.

In Model-1, the subject selection is executed as random sampling without

replacement from the total population, and the object selection is performed

randomly from among recognized subjects who have been recruited previously.

In Model-2, subject selection uses Respondent Driven Sampling while object

selection is performed the same model as for Model-1.

In Model-3, respondents are not only asked to identify subjects that they

recognize, but also they are required to estimate the proximity between themselves

and the subjects they recognized. In this model, the subject selection is performed

using RDS, and object selection is using the Sample Within Ego Network First

method.

In all three models above, the objects that are shown to a subject are chosen

from those subjects who are recognized among previous recruits. Therefore, the

number of subjects recognized, denoted as K, is calculated on-the-fly for each
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interview based on the recognition number on the discovered network size.

In each of these models, the experiments are performed on reference networks

of 1,000 and 10,000 nodes which were generated according to Barabasi-Albert model.

The reference graphs are generated with the following parameters.

• Number of Initial Nodes of Barabasi-Albert Model, m0= 10,

• Number of edges to attach for each new vertex, m=2.

All of the experiments are performed assuming two different perceivable

proximity thresholds. In one set of the experiments pm=2, and in another set of

experiments pm=3.

The experiments are conducted for rn 100,200,300 or 1000.

To evaluate the performance of each of the three models, we calculate all

pairs distance correlations, and report the adjusted vertex discovery numbers during

the course of interviews. Each experiment is conducted ten times and the results of

these ten trials are given along with error bars to show mean and the standard

deviation of performance outcomes.

The experiments are tested on computers which had 64 bit Intel I7-2600,

3.6Ghz CPU and 16 Gb. RAM. The operating system is Windows 7 Enterprise with

Service Pack-1.

6.1 Model-1 - Random

In this model, subjects were selected from the reference graph randomly

without replacement. After subject selection, the objects are selected from

previously interviewed subjects as follows.

First, the number of objects that the subject can recognize is calculated via

below equation:
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K = Recognition Number
Network Size × (t− 1)

where t is the number of interviews completed. Then K objects are selected

randomly among previously interviewed subjects. After object vertices have been

selected, proximity prediction is performed.

After K objects have been selected, they are shown to the subject, and the

subject attempts to estimate the pairwise proximity between these K objects. For

each of the
(

K
2

)
pairs, if the pairwise distance was less than or equal to the

perceivable proximity threshold, the subject is assumed to provide an accurate

estimate of the distance between the two vertices. If, on the other hand, the

pairwise distances which are greater than the perceivable proximity threshold, then

the subject is unable to provide a distance estimate for the pair.

After every 25 interviews, we take a snapshot of the system, run the

aggregation process, estimate the resulting network, and carry out the evaluation of

the accuracy of the estimated network.

In greater depth, firstly the response data was aggregated (see pg.33), then

an estimated network (see pg. 34)is computed, then this estimated network is used

to compute all pairs shortest path distance (see pg. 35), then the all pairs estimated

distance are correlated against the reference network, and adjusted vertex discovery

numbers are reported in order to evaluate the performance of the this scheme (pg.

36).

6.1.1 Results for Network of 1000 Nodes. Figure 13 illustrates

correlation coefficient values and vertex discovery numbers for a network of 1000

nodes during the course of conducting 1,000 interviews. The figures at the top are

obtained from experiments where the perceivable proximity threshold pm=2, while

the ones at the bottom are correspond to setup where the perceivable proximity is

taken as pm=3.
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(b) Vertex discovery numbers when pm=2
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(d) Vertex discovery numbers when pm=2
Figure 13 . All pairs correlation and vertex discovery numbers for 1000-node network

The correlation values and vertex discovery numbers are illustrated with

error bars which show mean and standard deviation for three recognition numbers

rn=100, 200 and 300 with colors red, green and blue, respectively. We shall discuss

each of these figures in turn.

Figure 13a shows the correlation coefficient for a network of 1000 nodes when

perceivable proximity pm=2. It can be clearly seen that there is an upward trend

for all recognition numbers while the slope of increase is larger for the blue and

green graphs.

If we analyze the graphs individually, we can see that initial data points for

the red graph appear after completing 75 interviews. These data points vary from

0.6 to 0.9 with large errors. From interview number 75 to 150, the red graph drops
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sharply from 0.8 to 0.4 with 0.1 standard deviation. By interview number 150, the

red graph starts rising and keeps increasing gradually until it reaches a mean

correlation coefficient of 0.7 by interview number 1000.

The blue and green graphs show a similar trend. Their initial data points

appear after completing just 50 interviews. Between interview number 50 and 100,

there is a sharp decline in the correlation value of the blue graph, whereas the green

graph experiences a similar drop which it does not overcome until interview number

125. After the blue and green graph "bottom out", they start to show an upward

trend, and continue to climb until the end of the experiment, albeit with a

decreasing slope.

The interview number at which the three curves reach a correlation coeffient

of 0.5, we see that the red graphs reaches this by interview number 150, whereas it

takes the blue and green graphs only 50 interviews to reach the same correlation

coefficient. When considering a threshold of correlation coefficient of 0.7, we see

that the red graph reaches this after 800 interviews while the green and blue achieve

after only 400 interviews. By the end of the simulation, the red graph has reached a

correlation coefficient of 0.7, while the blue and green graphs have attained a

correlation coefficient of 0.9.

We now turn to Figure 13b where we can observe the vertex discovery

numbers during the experiments. The purple line which extends from the bottom

left to the top right shows the number of subjects that have been interviewed so far,

this is also the upper bound of the vertex discovery number. This line is drawn to

make it easier to compare the observed values with the upper bound.

We can see that for all recognition numbers, the greatest divergence between

the upper bound and the actual vertex discovery numbers occurs during the first

250 interviews. After completing 250 interviews, we see that the graphs essentially

converge with the upper bound.
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This result may be explained by the fact that when the number of interviews

is small, we are forced to use correspondingly small K values. To put it more clearly,

in a network of 1,000 nodes, for the interview number is 51, K is equal to 5, whereas

for the interview number 251, K is equal to 25 (pg. 29).

In addition, vertex pairs whose pairwise distances are greater than the

perceivable proximity threshold are omitted, and as a result they are not included in

the estimated network. This feature of the model has an impact on the number of

discovered nodes, especially earlier on interview process. For instance, if we let K be

5, none of the selected subjects may be within the range of the perceivable

proximity threshold.

Another observation we can make is that all graphs start with high

correlation values, but these correlations drop sharply. The largest error bars are

also observed at this initial stage when correlations are high. Few vertices are

discovered at this early stage, and this results in the falling correlation values and

large errors in a few Type-I proxies that are included in the response data. Recall

that in the aggregation phase, if a pairwise distance has not been reported , a path

between these vertices will be computed, and if a path is found, it will be added as a

Type-II proxy within the system. Note that Type-II proxies eventually may cause

distortion if there is in reality a shorter path in the reference graph. With these

observations in mind, let us now analyze and compare the results of the next set of

experiments in which the perceivable proximity threshold is three.

In Figure 13c, we see that the first data points are observed at interview

number 25 for the blue, 50 for the red and 50 for the green graphs. The emergence

of these data points are earlier than the previously explained experiments.

The red graph shows a sharp decrease between interviews 50 and 75. After

showing a dip at interview number 75, the red graph rises sharply until interview

number 175. From interview number 175 to 600, the red graph continues to rise
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gradually. Between interview number 600 to 1000, red levels out at a correlation

value of 0.8.

The Blue and green graphs rise just after their initial data points. They then

show a gradual increase until the end of the experiment.

Comparing Figure 13a with Figure 13c, we can see that when we assume

larger perceivable proximity thresholds, the model achieves higher correlation

coefficient values. For example, while the red graph reaches 0.7 after 300 interviews,

in Figure 13a it reaches 0.7 after the 700th interview in Figure 13a. In Figure 13c

the blue and green graphs reach above correlation coefficient of 0.5 before

completing 100 interview, in Figure 13a, it takes for them 300 interviews to reach

the same correlation coefficient.

Parallel with this finding, we can see in Figure 13d that the vertex discovery

numbers converge to their upper bound earlier. For instance, it takes only half of

the number of interviews for the red graph to converge when the model is set to

when the perceivable proximity threshold is three.

Taken these findings together, we can conclude that a larger perceivable

proximity threshold results in higher vertex discovery numbers and correlation

coefficients. A possible explanation of these results may reside in the process with

which we add new vertices to the estimated network. Recall that when the distance

between vertex pairs is greater than the perceivable proximity threshold, the vertices

of this pair are not added in the response data (even if they are selected as objects).

It is more likely for two vertices to be at a distance less than or equal to 3 than to be

in a distance of 2. Thus, the set of vertices which are reachable at higher proximity

threshold settings include vertices which are reachable with lower proximity

threshold settings. For this reason, in the experiments with lower perceivable

proximity thresholds, vertices are more likely to be omitted from the response data.

In attempting to explain the rise in the correlation coefficients, we note that
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there is an increase in the number of Type-I proxies, and corresponding decrease in

the number of Type-II proxies.

In the next set of experiments, we discuss the analogous findings which are

obtained via experiments of networks of 10,000 nodes.
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(d) Vertex discovery when pm=3
Figure 14 . Model-1 All pairs correlation and vertex discovery numbers for 10,000-node
network

6.1.2 Results for Network of 10,000 Nodes. In Figure 14, the

correlation values are illustrated for experiments conducted in networks of 10,000

nodes. The recognition number parameter is set to 100,300 and 1000, and the

corresponding graphs for these three settings are shown in red, green and blue

respectively. Similar to the previous experiment, a total of 1000 interviews is

completed by the end of the experiment. Note that 1000 interviews comprise 10% of

the total population.
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In Figure 14a, the first correlation value for the red graph, is observed after

650 interviews. Then red fluctuates with high deviations until the end of the

simulation.

In considering the green graph, we observe that the first correlation

coefficient values arise after completing 400 interviews. Then the green graph

fluctuates until interview number 675, and continues to drop until the end of the

experiment.

When we consider the blue graph, we see that the first data points appear

after completing only 150 interviews. From interview number 150 to 450, the blue

graph drops gradually, then becomes steady until the end of the simulation.

Figure 14b shows the corresponding vertex discovery rates. We can see that

the vertex discovery numbers are very low. For the blue graph, where the

recognition number is 1000, the number of discovered vertices rises with a steady

pace between interview number 300 and 1000, and finally reaches approximately 400

vertices by the end of the simulation.

Figure 14b reveals that we discover very few vertices when the recognition

number is 100 or 300. When the recognition number is 1000, the correlation value is

observed to be 0.4 after we have completed interviews of 10% of the total

population.

In the experiments when perceivable proximity threshold is assumed to be

three, we can see that initial data points appear earlier, at interview number 75, 150

and 425 for blue, green and red graphs respectively. The red graph shows a

downward trend with large errors during the experiment and indicates correlation

value of 0.2 by the end. The green graph drops until interview number 350, reaching

correlation value of 0.3± 0.07. Between interview number 350 to 1000, the green

graph exhibits correlation values around 0.3. Blue starts rising after interview

number 125 and gradually increases until 500. Between interview number 500 and
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1000, the blue graph shows a steady pattern which levels off at correlation value of

0.6.

In the next part of this Section, we will compare the 1000 and 10,000 node

experiments.

6.1.3 1000 vs 10,000-node Networks. Comparing the experiments of

1000 and 10,000-node graphs, we can observe a significant decrease in vertex

discovery numbers and correlation values for larger networks.

A possible explanation for this might be the decrease in the recognition rate

in larger networks. Recall that the recognition ratio determines the number of

objects to be selected in an interview, and is calculated as

Recognition ratio = Recognition Number
Network Size .

Given this formula, we can say that any increase in network size causes a

linear decrease in the recognition ratio. For instance, let the interview number be

t= 200 , the recognition number is 100. In a network of 1000 nodes, the recognition

ratio will be 0.10 whereas a 10,000-node network the recognition ratio will be only

0.01. If we calculate K for these two scenarios, the K will be 20 for the 1000-node

network, but the K will be 2 for 10,000-node graphs. In Table 8, K values for

different number of interviews are shown for each of the two network sizes.

We see from Table 8 that at the same interview number, in larger networks,

the number of discovered vertices is lower. One should consider the fact that the K

value is an important factor in determining the efficiency of vertex discovery during

the data collection process. Another reason for the decrease in efficiency with larger

networks may be the subject selection scheme (random sampling without

replacement). In the implementation of these experiment, subjects are selected

randomly from the reference network. Given that the objects are selected from
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HHH
HHHt
RN 100 200 300

100 10 20 30
200 20 40 60
300 30 60 90
400 40 80 120
500 50 100 150
600 60 120 180
700 70 140 210
800 80 160 240
900 90 180 270
1000 100 200 300

a)Network of 1000 nodes

HHH
HHHt
RN 100 300 1000

100 1 3 10
200 2 6 20
300 3 9 30
400 4 12 40
500 5 15 50
600 6 18 60
700 7 21 70
800 8 24 80
900 9 27 90
1000 10 30 100

b)Network of 10,000 nodes
Table 8
Number of objects to be selected at each 100 interviews according to different recognition
numbers

among the prior subjects, we can infer that randomly selected objects from a larger

network will more likely to be further away from each other than that vertices

selected from smaller networks. Accordingly, we would expect that the vertex pairs

are more likely to be omitted in the estimated graph because their pairwise

distances are greater than the perceivable proximity threshold.

We also see higher error rates in the correlation value when considering the

10,000-node network. The reason for these higher errors bars may be that fewer

pairs of subjects are compared during the experiments (This is particularly true

when the recognition number is small). In larger networks, Type-II proxies are more

likely to produce greater distortion if the Type-II proxy is not coincident with

shortest path.

To sum up, Model-1 performs better in 1000-node networks than in

10,000-node networks. In a 10,000-node network when perceivable proximity

threshold is 2, vertex discovery numbers are very low, especially for recognition

number 100 and 300. When the perceivable proximity threshold is taken to be 3, at

recognition number 1000, the model can reach correlation values above 0.5.
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pm RN ρ ≥ 0.5 ρ ≥ 0.7
2 100 350 850
2 200 300 425
2 300 175 375
3 100 150 325
3 200 50 150
3 300 25 100

a)Network of 1000 nodes

pm RN ρ ≥ 0.5 ρ ≥ 0.7
2 100 few nodes few nodes
2 300 few nodes few nodes
2 1000 - -
3 100 - -
3 300 - -
3 1000 500 -

b)Network of 10,000 nodes
Table 9
The table shows the minimum number of interviews necessary to reach a correlation
coefficient greater than 0.5 and 0.7 (Model-1)

6.1.4 Summary of Findings. In Table 9, it can be seen that Model-1

performs better in 1000-node networks compared to 10,000-node networks. In a

1000-node network, Model-1 can reach above a correlation value of 0.5 with all

recognition numbers by interviewing at most 350 person in the population. The

number of interviews that are necessary decreases to 150 when the perceivable

proximity threshold is taken two. By examining the figure we may conclude that:

• Recognition ratio which determines the number of objects shown is positively

correlated with the model’s performance,

• Perceivable proximity threshold has a direct effect on the performance,

• Network size is significantly and negatively correlated to the performance.

• Random sampling method is more likely to select objects which are further

away from each other, which results in lower vertex discovery rates and

correlation coefficients

• Model-1 is inefficient for 10,000-node networks, if the recognition ratio is less

than 10% of the population size.

6.2 Model-2

In Model-1, subject selection was performed with random sampling in which

all vertices were given the same chance for being selected. While random sampling
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is a well accepted method, this scheme may result in choosing subjects which are

further from each other, and as discussed above, this results in omitting vertices

from the estimated graph.

Considering this consequence of random sampling, in Model-2 we used

Respondent Driven Sampling instead. Throughout the experiments, RDS is

implemented with following parameters.

• Number of initial seeds for RDS s= 10

• RDS coupons c=3

The tests for Model-2 make use of the reference graphs which are identical to

the ones used in testing Model-1. In the discussion below, we examine the results of

the same experiments that are used to test Model-1, but here the focus is describing

the impact of using the RDS scheme. At the end of this part, we will also provide a

comparison of Model-1 and Model-2.

6.2.1 Results for Network of 1000 Nodes. Figure 15 illustrates all

pairs correlation values between estimated network and reference network, and as

well as, the vertex discovery numbers during the course of 1000 interviews.

In Figure 15b, we observe that the fist data point of the red graph appears at

interview number 50. The red graph exhibits a dip, at interview number 100, then

rises gradually until interview number 425 where it achieves a correlation coefficient

of 0.75. The red graph continues to remain above correlation coefficient 0.7 until the

end of the simulation, although it experiences a slight decline after interview

number 500. For the green and blue graphs, we observe a gradual increase between

interview numbers 100 and 200. After interview number 200, both graphs level out

at a correlation coefficient in excess of 0.9.

We now turn to vertex discovery rates. In Figure 15b, we can see that the

graphs converge with the upper bound vertex numbers rapidly. The only exception
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Figure 15 . Model-2 All pairs correlation and vertex discovery numbers for 10,000-node
network

may be the performance of the red graph during the first 150 interviews. We see

that at interview number 50, the red graph has only discovered approximately 10

vertices. The number of discovered vertices becomes nearly 60 when the red graph

has completed 100 interviews. By interview number 150, the red graph has

essentially converged with the upper bound number.

When we analyze the number of interviews that these three graphs require in

order to reach a particular correlation values, we can see that after 300 interviews,

the red graph reaches above a correlation coefficient of 0.7. At interview number

300, red’s vertex discovery number achieves the upper bound value. For the blue

and green, the discovered vertices converge with the upper bound after only 100

interviews.
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We now turn to Figures 15c and 15d, where we assume perceivable proximity

threshold is three. It can be seen that all data points approximately become 0.1

point higher than in this scenario when the perceivable proximity threshold is two.

After the 225th interview, the red graph reaches a correlation coefficient 0.7. It ends

with a correlation coefficient in excess of 0.8 at interview number 1000. The blue

and green graphs show correlation coefficient values of 0.9 only after completion of

175 interviews.

Note that in Figure 15, the last data points are observed at the 950th

interview, because RDS has already selected all possible subjects, and the vertex set

under consideration is exhausted. In the next part of this section, we will discuss

the results of the corresponding experiments which are conducted on networks of

10,000 nodes.

6.2.2 Results for Network of 10,000 Nodes. Figure 16 shows

correlation coefficient and vertex discovery numbers when Model-2 is applied to

networks of 10,000 nodes.

One of the noteworthy features observed in Figure 16b is the size of error

bars. In addition, the error bars are smaller when the recognition number is larger.

Another observation is the trend: all graphs experience a fall, and then rise

continuously as the interviews proceed.

When we consider the vertex discovery rate, we see that the red graph only

discovers a few vertices until it has completed 1000 interviews, and the correlation

coefficient exhibits a decreasing trend throughout.

When we consider the green graph, we see that the correlation coefficient

value is only 0.4 at interview number 400. Starting from this interview onwards, the

green graph rises steadily, and at the end of 1000 interviews it reaches a correlation

coefficient of 0.5.

As expected, we observe the best performance when the recognition number



SNAPT 57

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800  900  1000

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

Time (Number of interviews)

All Pairs Correlation Between Gr and Gest (N=10000,  perceivable proximity=2  )

RN=100
RN=300

RN=1000

(a) All pairs correlation when pm=2

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700
 750
 800
 850
 900
 950

 1000

 0  50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

 950

 1000

N
um

be
r 

of
 D

is
co

ve
re

d 
V

er
tic

es

Time (Number of interviews)

Adjusted Vertex Discovery Numbers (N=10000,  perceivable proximity=2  )

RN=100
RN=300

RN=1000
max

 0

 50

 100

 150

 200

 250

 0  50

 100

 150

 200

 250

Zoom

(b) Vertex discovery numbers when pm=2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800  900  1000

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

Time (Number of interviews)

All Pairs Correlation Between Gr and Gest (N=10000,  perceivable proximity=3  )

RN=100
RN=300

RN=1000

(c) All pairs correlation when pm=3

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700
 750
 800
 850
 900
 950

 1000
 0  50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

 950

 1000

N
um

be
r 

of
 D

is
co

ve
re

d 
V

er
tic

es

Time (Number of interviews)

Adjusted Vertex Discovery Numbers (N=10000,  perceivable proximity=3  )

RN=100
RN=300

RN=1000
max

 0

 50

 100

 150

 200

 250

 0  50

 100

 150

 200

 250

Zoom

(d) Vertex discovery numbers when pm=3
Figure 16 . Model-2: All pairs correlation and vertex discovery numbers for 10,000-node
network

is the highest. The blue graph fluctuates in the first 150 interviews, and then begins

to rise steadily after interview number 150 at which point the correlation coefficient

is 0.5. This steady rise in correlation coefficient continues as interviews proceed

finally reaching a value of 0.9 by interview number 1000. Next we consider how

these experimental results change when the perceivable proximity threshold is

increased to three.

Figure 16c and 16d, illustrate the performance of accuracy of the estimated

network when perceivable proximity threshold is taken to be three.

The figures show that higher correlation values and vertex discovery numbers

are achieved for all settings of recognition number parameter. After completing

1000 interviews, the red graph reaches a correlation coefficient of 0.3, and has
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discovered 500 vertices. In comparison, the green graph has achieved a correlation

coefficient in excess of 0.5, and has discovered 950 vertices. Finally the blue graph

has achieved a correlation coefficient of 0.9, and has discovered 1000 nodes.

pm RN ρ ≥ 0.5 ρ ≥ 0.7
2 100 150 300
2 200 50 125
2 300 25 75
3 100 125 225
3 200 50 75
3 300 25 50

a)Network of 1000 nodes

pm RN ρ ≥ 0.5 ρ ≥ 0.7
2 100 - -
2 300 1000 -
2 1000 200 575
3 100 - -
3 300 675 -
3 1000 175 300
b)Network of 10,000 nodes

Table 10
The table shows the minimum number of interviews necessary to reach a correlation
coefficient greater than 0.5 and 0.7 (Model-2)

6.2.3 Comparing Model-2 vs Model-1. In Table 10, we can see that

in 1000-node networks, the correlation coefficient rapidly reaches above 0.7 even

when the perceivable proximity threshold is assumed to be 2. For instance, with the

smallest recognition number, it takes 300 interviews for Model-2 to reach above

correlation coefficient of 0.7. On the other hand, the blue and green graphs indicate

higher correlation values in excess of 0.7 at just 150 interviews.

For 10,000-node networks, when the perceivable proximity threshold is 2, the

correlation coefficient values are very low when the recognition number is 100.

However, when the recognition number is 300 or 1000, Model-2 attains correlation

coefficients above 0.5 with vertex discovery numbers of 200 and 1000, respectively.

By the end of the interview process, the green graph (where the respondents

recognize 3% of the population) the correlation coefficient reaches 0.5. When the

recognition ratio is increased to 10% (as is the case in the blue graph) the

correlation coefficient achieved is much higher, 0.8. Considering the trend across

graphs in these experiments, we believe the correlation coefficient will continue to

rise as we interview more subjects.

In Figure 17, the results of Model-1 and Model-2 are provided. The figures at
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the top show results of 1000-node networks, and the figures in the second row

illustrate the 10,000-node-networks experiments. For simplicity, we do not show all

the results for Model-1 and Model-2, and only compare those where the perceivable

proximity threshold is taken to be 2.
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Figure 17 . Comparison of Model-1 and Model-2 when perceivable proximity threshold is
assumed to be 2

By comparing the figures at the top, we see that the final correlation

coefficient values of both models are commensurate. However, in the Model-2

experiments, the graphs achieve their maximum correlation values more rapidly as

the interview process proceeds. For instance in Model-1, the red graph reaches

correlation coefficients of 0.5 and 0.7 at interview number 300 and 700, respectively.

In Model-2, we reach these correlation coefficient values at interview numbers 125
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and 300, respectively. In other words, Model-2 achieves the same correlation

coefficient values after fewer interviews than Model-1 does. This suggests that in

1000-node networks, Model-2 is significantly more efficient than Model-1.

In 10,000-node network experiments, we observe that when recognition ratio

is 1% (as is the case in the red graph), none of the models can achieve a high

correlation. On the other hand, when the recognition number is taken to be 300 or

1000, Model-2 reveals higher correlation values (0.5 and 0.8, respectively) after

completing 1000 interviews.

To summarize, we conclude that Respondent Driven Sampling performs

significantly better than the random sampling. The main reason for this

improvement is that RDS favors the selection of subjects which are local to one

another in the network. Since objects are selected from previously interviewed

subjects, this bias in RDS ensures that a greater percentage of objects will lie within

the perceivable proximity threshold, and thus be included in the estimated graph.

6.2.4 Summary of Findings.

• Respondent Driven Sampling enhances the performance of the model in all

experiments,

• In 1000-node networks, the models can reach correlation coefficients of 0.5 and

0.7 after recruiting 150 and 300 respondents, respectively. When we have

recognition numbers of 200 and 300, Model-2 reaches a correlation coefficient

in excess of 0.7 interviewing only 125 respondents (page 58).

• In 10,000 node networks, after interviewing 10% of the entire population,

Model-2 attains a correlation coefficient in excess of 0.5 when the recognition

number is 300. When the recognition number is increased to 1000, this

correlation coefficient increases to 0.8.
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6.3 Model 3

In previous results, we saw that RDS performs much better than random

sampling, especially in large networks. For this reason, in Model-3, we retain RDS

as the subject selection scheme. However, in Model-3, the object selection is

performed by sampling within Ego Network First(ENF) instead of random

sampling. In the ENF scheme, we seek to minimize the omitted reports by favoring

the selection of objects that are closer to one another.

In order to achieve this goal, the respondents are asked to report the distance

between themselves and previous recruits. Then the system selects a set of objects

which are close to the subject, and asks the subject to estimate the perceived

proximity between these objects. The reader may refer the description in pg. 31 for

a more detailed explanation of the ENF.

Note that in this process, we retain our assumption that subjects can only

report the distance between a pair of objects if the distance is less than or equal to

the perceivable proximity threshold. A respondent who is asked to estimate the

distance between his/herself and the object will only be able to do so if this distance

less than or equal to the perceivable proximity threshold.

With respect to privacy issues, Model-3 presents some challenges, because

respondents are being asked to reveal their own relationships. However, this

information is only used for object selection, and is not incorporated incorporated

into the estimated network structure itself. Thus, subjects may be reassured by the

promise that the information they provide about their own relationships is not

being retained in any way by the system.

As in previous experiments, the tests for Model-3 are based on the same

reference graphs that are used to test the previous two models. After presenting the

results of Model-3 tests, we will make a comparison between Model-2 and Model-3.
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6.3.1 Results for Network of 1000 Nodes. In Figure 18a and Figure

18b, the results are for the situation where the perceivable proximity threshold is 2.

In Figure 18a, all graphs exhibit a correlation coefficient in excess of 0.5 even at the

very beginning of the interviewing process. Just after the first data points appear,

the graphs start to rise gradually, and reach values above 0.7 after only the first 100

interviews. They then continue to climb until interview number 400, and from this

point on, the graphs always remain above 0.9 showing minor fluctuations.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800  900  1000

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

Time (Number of interviews)

All Pairs Correlation Between Gr and Gest (N=1000,  perceivable proximity=2  )

RN=100
RN=200
RN=300

(a) All pairs correlation when pm=2

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700
 750
 800
 850
 900
 950

 1000
 0  50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

 950

 1000

N
um

be
r 

of
 D

is
co

ve
re

d 
V

er
tic

es

Time (Number of interviews)

Adjusted Vertex Discovery Numbers (N=1000,  perceivable proximity=2  )

RN=100
RN=200
RN=300

max

 0

 50

 100

 0  50

 100

Zoom

(b) Vertex discovery numbers when pm=2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800  900  1000

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

Time (Number of interviews)

All Pairs Correlation Between Gr and Gest (N=1000,  perceivable proximity=3  )

RN=100
RN=200
RN=300

(c) All pairs correlation when pm=3

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700
 750
 800
 850
 900
 950

 1000

 0  50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

 950

 1000

N
um

be
r 

of
 D

is
co

ve
re

d 
V

er
tic

es

Time (Number of interviews)

Adjusted Vertex Discovery Numbers (N=1000,  perceivable proximity=3  )

RN=100
RN=200
RN=300

max

 0

 50

 100

 0  50

 100

Zoom

(d) Vertex discovery numbers when pm=3
Figure 18 . All pairs correlation and vertex discovery numbers for 1000-node network

When we look at Figure 18b, we see that the vertex discovery numbers

converge to the upper bound vertex numbers after only 100 interviews. We can also

observe that the red graph shows large errors prior to its convergence to the upper

bound.
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When we compare the correlation coefficient values achieved under different

perceivable proximity threshold settings, we can observe that increasing the

perceivable proximity threshold enhances the rate at which the maximum correlation

coefficient value is reached as the interview process unfolds. For example, in Figure

18c when the perceivable proximity threshold is three, the blue, green and red

graphs reach 0.9 at interview number 100, 125 and 275, respectively. In comparison

when the perceivable proximity threshold is set to 2, these same correlation

coefficients requires 175, 200 and 375 interviews, respectively to reach 0.9.

If we compare vertex discovery numbers, we can see that the impact of the

perceivable proximity threshold is quite small compared to its impact in the

previous two models. Comparing the red graph in Figure 18b and Figure 18d, we

see that both configurations reveal approximately the same vertex discovery

numbers. In the next part of this Section, we present the results of analogous

experiments conducted on a network of 10,000 nodes.

6.3.2 Results for Network of 10,000 Nodes. Figure 19 shows the

experimental data from a 10,000-node network experiment in which Model-3 is

applied.

Similar to previous models, in Figure 19a, the correlation graphs show a

trend that begins with large fluctuations. These fluctuations continue until the

graphs bottom out. After the graphs experience an initial dip, they theny rise

steadily throughout the interview process. The red graph reaches a correlation

coefficient of 0.6, while the green and blue graphs reach correlation coefficient in

excess of 0.7 upon completing 1000 interviews. Note that Model-3 provides the

highest correlation coefficient value for the red graph (which corresponds to a

situation in which respondents can recognize only 1% of the total population).

With respect to vertex discovery numbers,the red, green and blue graphs

discover 750, 850 and 950 vertices, respectively in the course of 1000 interviews.
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(d) Vertex discovery numbers when pm=3

Figure 19 . Model 3 All pairs correlation and vertex discovery numbers for a 10,000-node
network

Comparing the performance of Model-3 with respect to changes in the

perceivable proximity threshold, we see similar trends in the correlation coefficient

graphs. When the perceivable proximity threshold is increased to 3 the correlation

values for all graphs are approximately 0.1 higher than when the perceivable

proximity threshold is 2. Another marked difference is that the error bars become

significantly smaller when the perceivable proximity threshold is increased.
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Figure 20 . Comparison of Model-2 and Model-3 when perceivable proximity threshold is
assumed to be 2

6.3.3 Comparing Model-3 vs. Model-2. We will now present a

comparison between Model-2 and Model-3 for both 1000 and 10,000-node networks.

Throughout this comparison, we will assume the perceivable proximity threshold is

taken as 2; similar results hold when the perceivable proximity threshold is taken to

be 3.

When we compare Figure 20a to 20b, the blue and the green graphs show a

similar trend. However, we can see that there is a remarkable increase in the

correlation coefficient values of the red graph in Model-3. We see that the red graph

reaches a correlation coefficient of 0.7 by interview number 100, and continues to

rise to 0.8 for the next 100 interviews. In Model-2 the red graph reaches a
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correlation coefficient of 0.7 but it requires 300 interviews to do so.

When we turn to the experiments in networks of 10,000 nodes, we see that

Model-3 performs significantly better than Model-2, especially for red and green

graphs. In Model-2, the red graph at the end of the interview process still exhibits

large error bars, and shows a downward trend. In Model-3, in contrast we see that

the red graph reaches a correlation coefficient of 0.6 by the end of the interview

process with an upward trend.

When we look at the green graph, we also see that Model-3 outperforms in

terms of correlation values. The green reaches above 0.7 by the end of the

experiment, whereas in Model-2 it reaches only 0.5.

The blue graph, on the other hand, exhibits behavior that is comparable in

both Model-2 and Model-3, reaching a correlation coefficient of 0.8.

To conclude, when the recognition numbers are low, Model-3 significantly

outperforms Model-2 in terms of correlation coefficient values and vertex discovery

numbers. This advantage decreases when the recognition number is assumed to be

larger.
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pm RN ρ ≥ 0.5 ρ ≥ 0.7
2 100 50 100
2 200 25 25
2 300 25 75
3 100 75 125
3 200 25 50
3 300 25 50

a)Network of 1000 nodes

pm RN ρ ≥ 0.5 ρ ≥ 0.7
2 100 700 -
2 300 275 750
2 1000 75 425
3 100 650 -
3 300 175 425
3 1000 50 125
b)Network of 10,000 nodes

Table 11
The table shows the minimum number of interviews necessary to reach a correlation
coefficient greater than 0.5 and 0.7 (Model-3)

6.3.4 Summary of Findings.

• In 1000-node networks, it takes at most 100 interviews for Model-3 to reach a

correlation coefficient in excess of 0.7.

• In 10,000-node networks, where the recognition number is 100, after

interviewing 10% of the entire population, Model-3 can reach a correlation

coefficient of 0.5. When the recognition number is increased to 300 or 1000,

the model achieves a correlation coefficient in excess of 0.7.

7 Discussion

In this section, we will compare the results of each model in turn with

respect to correlation values, vertex discovery rates, time efficiency and anonymity

assurance. In contrast with the previous sections where we examined each model

separately, in the figures that follow, we will illustrate all three models together in

order to make evident the differences between them.

In Figure 21, the results are presented for networks of 1000 nodes. The red,

green and blue graphs represent random (Model-1), RDS (Model-2), and RDS-Ego

(Model-3), respectively.

When we analyze the correlation values for different recognition number

settings, we can see in Figure 21a that when the recognition number is 100, Model-3
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Figure 21 . Comparison of results for network of 1000 nodes (Perceivable proximity =2 )

performs significantly better than Model-1 and Model-2. In Figure 21b and Figure

21c, when the recognition numbers is increase to 200 or 300, we can see that

Model-2 and Model-3 perform almost identically in terms of correlation values. We

also see that the increase in recognition ratio decreases the performance gap between
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Model-2 and Model-3. The increase in the recognition ratio raises the size of the

object set, which ultimately increases the number of Type-I proxies. From this fact,

we can conclude that when higher rates of recognition are expected, either Model-2

or Model-3 should be chosen. This design choice becomes more important especially

when network privacy and anonymity concerns might make Model-3 unattractive.

When we consider the vertex discovery numbers, we see that Model-2 and

Model-3 exhibit comparable performance while Model-1 exhibits much lower

performance, especially in the initial stages of the interview process.

Analyzing the overall results from the 1000-node networks, we conclude that

the performance is most greatly impacted by the subject selection scheme and the

recognition number. The RDS scheme which is implemented in both Model-2 and

Model-3 yields higher vertex discovery numbers and higher correlation coefficient

values. As noted before, RDS enables the sample to grow in such a way that recruits

are closer to previous respondents. This feature increases the chances of RDS based

models to select random objects that are within the perceivable proximity threshold.

Thus, RDS based schemes result in greater numbers of Type-I proxies, and they can

achieve higher vertex discovery numbers and correlation values.
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(b) Recognition number 300
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Figure 22 . Comparison of results for network of 10,000 nodes(Perceivable proximity =2)

If we now turn to network of 10,000 nodes, we observe that when the

expected recognition number is 1% of the entire population, Model-3 is the only one

which can exhibit acceptable vertex discovery numbers. Comparing Model-2 to

Model-3, wherein the only difference is the object selection scheme, we can see that
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preferring objects that are close to the subject (as is done in Model-3) results in

selecting vertex pairs that are close to one another which increases the likelihood to

choose objects within the perceivable proximity threshold. This leads to Model-3’s

superior performance and the discovery of 750 vertices with a correlation coefficient

of 0.6 after completing 1000 interviews. When we look at Figure 22c, where the

recognition number is 300, we observe that Model-2 discovers 750 vertices with the

correlation value of 0.5 where Model-3 discovers 850 vertices and reaches a

correlation coefficient value of 0.7.

In the last set of experiments, when the recognition rate is assumed to be

10%, we see that Model-2 and Model-3 exhibit commensurate performance, and the

vertex discovery numbers are above 900 and correlation coefficient values are around

0.8. Like our experiments in 1000-node network, we see that the increasing the

recognition ratio enhances Model-2’s performance significantly (and more than the

improvement experienced in other models.)

Taking together all the experiments discussed so far, we can summarize our

observations as follows:

• RDS enables the models to sample individuals who are close to each other.

This ability of RDS enhances the performance of the selector to choose objects

within the perceivable proximity threshold.

• In larger networks, the probability for two vertices to be within a geodesic

distance less than or equal to the perceivable proximity threshold is lower than

the same probability in smaller networks.

• During object selection, selecting objects that are close to the respondents

results in better performance. This strategy, however, requires respondents to

report some information about their ego-networks.

When evaluating the performance of the three models we should take into
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consideration time efficiency. This is dependent on the number of objects, K, which

are shown in interviews. Recall that the respondents are asked to report
(

K
2

)
pairwise distances. This implies that the time necessary to conduct the interview

and the number of recognized objects follow a quadratic relation. Considering the

fact that the roster method becomes unmanageable after 30-50 names (Butts, 2008),

organizing object pairs in such a way that respondents can quickly report the

distance between pairs is a challenging design objective.

With regards to privacy and anonymity, in all three of the models,

respondents are asked to report perceived proximity among alters who have been

already enumerated in the sample. In other words, respondents are asked to report

social proximity among the subjects who are already recorded in the system. In

terms of privacy concerns, Model-1 and Model-2 are superior as no information is

asked of subjects concerning their own social ties. In Model-3, the subjects are

asked to report their social distances from the people who have been interviewed so

far. Although this information is not stored and is only used for selecting objects

with a bias towards the individuals that are closer to the interviewee within the

social network, we note that it might still raise some privacy concerns.

8 Limitations and Future Research

There are a number of potential limitations to this work which we hope to

address in time.

We assume that respondents will be able to report the perceived social

distance between alters, and that this reported estimate will be the actual geodesic

distances between the alters in the underlying social networks. There are optimistic

studies which suggest that people can perceive groups and can distinguish members

according to their position in a social network (Freeman, Freeman, & Michaelson,

1988). There has also been some research and geodesic distances can correlate well
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with the perceived distances (Krackhardt & Kilduff, 1999). However, there are also

extensive counter arguments in the literature which suggest that informants’ reports

are prone to error and inaccuracy (Bernard et al., 1979; Butts, 2003; Krackhardt,

1987). To further complicate matters, human perception on dyadic proximity may

vary according to the position of the person who is observing the relation (Wilson,

O’Leary, Metiu, & Jett, 2008; Hamilton & Sherman, 1996). These concerns imply

that the results we present here should be taken as an optimistic evaluation.

Further experiments are necessary to evaluate the impact of informant inaccuracy

(Krackhardt, 1987; Siciliano, Yenigun, & Ertan, 2012).

In this work we have taken into consideration that respondents can not

recognize every person in the social network, by implementing a recognition number

parameter which captures the number of individuals that each respondent can recall.

This assumption that all respondents are able recognize an equal number of people

is also problematic. Some prior work suggests that individuals exhibit considerable

variation of the numbers of alters that they can recognize (Bell, Belli-McQueen, &

Haider, 2007; Casciaro, 1998; Hill & Dunbar, 2003). Future extensions of our work

should consider modeling this variation in recognition number.

In implementing RDS, we assume that the respondents distribute their

coupons to individuals with whom they have closest ties. In the present

implementation the new RDS recruits are selected from the neighbors of previous

respondents who have been given coupons. While there is evidence that recruits are

more likely to be chosen from those who have close ties with respondents (Salganik

& Heckathorn, 2004; Wejnert, 2010), we note that recruits may distribute their RDS

coupons to people who are not within their ego network. In the future this will also

be incorporated in our study.

Our results are based on networks which are generated according to the

Barabasi- Albert model. We select the Barabasi-Albert model, because it is simple
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to implement, and it is a realistic model that has been validated by numerous

researchers, and shown to reflect the topology and degree distribution of the actual

social networks (Schneeberger et al., 2004; Dombrowski et al., 2013). However, it

may be the case that the Barabasi-Albert model is not suitable for certain types of

social networks (Bearman, Moody, & Stovel, 2004). In the future studies, we should

also run our simulations in networks generated with models other than

Barabasi-Albert, as well as using actual social network data previously collected by

other researchers.

Our finding are results of simulations, and they demonstrate that it is

possible to estimate social network topology with our approach. Although the

simulation is a cost-effective method to test an approach before implementing, we

confess that our experiments is away from covering problems that can occur during

human interaction. Therefore, in future studies, we should also conduct small-scale

field studies to evaluate our approach.

Finally, our approach may lead to large numbers of objects to be shown in

interviews. As previously mentioned, classical approaches such as use of a roster

may be impractical for very large number of objects. In addition, large number of

objects may lead to very time-consuming interviews. However, we believe that the

social proximity perceptions of the respondents can be efficiently and quickly

elicited by using technologies such as interactive software and touchscreens. Future

studies should, therefore, address this design and implementation issue.

9 Conclusions

SNA is challenging, and especially is so when the network under

consideration is large, when the community is hard-to-reach, or when there is a lack

of reliable data.

Hackers, child-porn users, customers and deliverers of online black markets
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are hidden networks of cyberspace which exploit the anonymous nature of internet

to conduct their criminal acts. Researchers wishing to study such networks need

rigorous research tools and methods rather than classical approaches.

In this thesis, we develop a new data collection technique and associated

analysis methods to harvest information about the topological structure of social

networks where there is no prior information available, and where the members are

concerned about their privacy and anonymity.

Through simulation experiments, we test our novel data collection approach.

In contrast with prior techniques, we do not ask interviewees to disclose their own

ties, opting instead to ask them only to report on perceived dyadic distances among

pairs of prior respondents.

Our results indicate that respondents’ perceptions of perceived network

distance between pairs of alters can be aggregated efficiently to produce estimates of

social network distances with high accuracy.

We observe that network size, recognition ratio, and perceivable proximity

threshold have significant effects on the performance of our models. We find that

larger networks require more interviews to reach the same level of accuracy when

compared to the requirements for smaller networks. The recognition ratio, which

controls the number of objects that are shown in each interview is observed to have

a positive impact on correlation coefficient values. Increasing the recognition ratio

enhances the rate at which models converge to their maximal correlation values over

the interview process. Similarly, when the perceivable proximity threshold is

increased, we observe higher correlation values are achieved earlier on the interview

process.

We also find out that sampling methods have an impact on the performance

of our new data collection scheme. In particular, Respondent Driven Sampling

significantly outperforms random sampling both in terms of node discovery and
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correlation values. We find that selecting objects which were closer to the

interviewee improves the rate at which a model can attain its high correlation values

in the course of interview process.

Our schemes are efficient because they permit respondents to report

perceived distances between pairs of alters even when the intermediary nodes on the

geodesic connecting these alters are not part of the studied sample.
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Appendix

Class Diagrams

Figure A1 . This class diagram illustrates the custom classes used in generating reference graph.
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Figure A2 . This class diagram illustrates the custom classes used in different selection scheme.
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Figure A3 . This class diagram illustrates the custom classes used in aggregation
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Figure A4 . This class diagram illustrates the custom classes used in generating estimated
graph.
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Figure A5 . This class diagram illustrates the custom classes used in different evaluation methods.


